Patents by Inventor Jeffrey W. Bacon

Jeffrey W. Bacon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6686489
    Abstract: A liquid precursor for forming a transparent metal oxide thin film comprises a first organic precursor compound. In one embodiment, the liquid precursor is for making a conductive thin film. In this embodiment, the liquid precursor contains a first metal from the group including tin, antimony, and indium dissolved in an organic solvent. The liquid precursor preferably comprises a second organic precursor compound containing a second metal from the same group. Also, the liquid precursor preferably comprises an organic dopant precursor compound containing a metal selected from the group including niobium, tantalum, bismuth, cerium, yttrium, titanium, zirconium, hafnium, silicon, aluminum, zinc and magnesium. Liquid precursors containing a plurality of metals have a longer shelf life. The addition of an organic dopant precursor compound containing a metal, such as niobium, tantalum or bismuth, to the liquid precursor enhances control of the conductivity of the resulting transparent conductor.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 3, 2004
    Assignee: Symetrix Corporation
    Inventors: Jolanta Celinska, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan
  • Patent number: 6511718
    Abstract: A venturi mist generator creates a mist comprising droplets having a mean diameter less than one micron from liquid precursors containing multi-metal polyalkoxide compounds. The mist is mixed and then passed into a gasifier where the mist droplets are gasified at a temperature of between 100° C. and 250° C., which is lower than the temperature at which the precursor compounds decompose. The gasified precursor compounds are transported by carrier gas through insulated tubing at ambient temperature to prevent both condensation and premature decomposition. The gasified precursors are mixed with oxidant gas, and the gaseous reactant mixture is injected through a showerhead inlet into a deposition reactor in which a substrate is heated at a temperature of from 300° C. to 600 ° C. The gasified precursors decompose at the substrate and form a thin film of solid material on the substrate. The thin film is treated at elevated temperatures of from 500° C. to 900° C.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: January 28, 2003
    Assignee: Symetrix Corporation
    Inventors: Carlos A. Paz de Araujo, Larry D. McMillan, Narayan Solayappan, Jeffrey W. Bacon
  • Patent number: 6495709
    Abstract: A precursor for forming an aluminum oxide film comprises a liquid solution of an aluminum organic precursor compound in an organic solvent. In a second embodiment, the precursor comprises a suspension of aluminum oxide powder in a solution of an aluminum organic precursor compound. A precursor according to the invention is deposited on a substrate by dipping, rolling, spraying, misted deposition, spin on deposition, or chemical vapor deposition then heated to fabricate transparent aluminum oxide films. The electronic properties of the aluminum oxide films may be improved by depositing a plurality of layers of the precursor and annealing the precursor between layers.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: December 17, 2002
    Assignees: Symetrix Corporation, Matsushita Electric Industrial Co., Ltd.
    Inventors: Jolanta Celinska, Jeffrey W. Bacon, Akihiro Matsuda, Carlos A. Paz de Araujo
  • Patent number: 6441414
    Abstract: A ferroelectric non-volatile memory in which each memory cell consists of a single electronic element, a ferroelectric FET. The FET includes a source, drain, gate and substrate. The fact that the drain to source current, lds, is always negative if a substrate to drain bias, Vss, of 0.8 volts or more is applied, permits the creation of a read and write truth table. A gate voltage equal to one truth table logic value is applied via a column decoder and a substrate bias equal to another truth table logic value is applied via a row decoder to write to the memory a resultant lds logic state, which can be read whenever a voltage is placed across the source and drain.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: August 27, 2002
    Assignee: Symetrix Corporation
    Inventors: Myoungho Lim, Vikram Joshi, Jeffrey W. Bacon, Joseph D. Cuchiaro, Larry D. McMillan, Carlos A. Paz de Araujo
  • Publication number: 20020087018
    Abstract: A liquid precursor for forming a transparent metal oxide thin film comprises a first organic precursor compound. In one embodiment, the liquid precursor is for making a conductive thin film. In this embodiment, the liquid precursor contains a first metal from the group including tin, antimony, and indium dissolved in an organic solvent. The liquid precursor preferably comprises a second organic precursor compound containing a second metal from the same group. Also, the liquid precursor preferably comprises an organic dopant precursor compound containing a metal selected from the group including niobium, tantalum, bismuth, cerium, yttrium, titanium, zirconium, hafnium, silicon, aluminum, zinc and magnesium. Liquid precursors containing a plurality of metals have a longer shelf life. The addition of an organic dopant precursor compound containing a metal, such as niobium, tantalum or bismuth, to the liquid precursor enhances control of the conductivity of the resulting transparent conductor.
    Type: Application
    Filed: November 9, 2001
    Publication date: July 4, 2002
    Applicant: Symetrix Corporation
    Inventors: Jolanta Celinska, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan
  • Patent number: 6376691
    Abstract: A liquid precursor for forming a transparent metal oxide thin film comprises a first organic precursor compound. In one embodiment, the liquid precursor is for making a conductive thin film. In this embodiment, the liquid precursor contains a first metal from the group including tin, antimony, and indium dissolved in an organic solvent. The liquid precursor preferably comprises a second organic precursor compound containing a second metal from the same group. Also, the liquid precursor preferably comprises an organic dopant precursor compound containing a metal selected from the group including niobium, tantalum, bismuth, cerium, yttrium, titanium, zirconium, hafnium, silicon, aluminum, zinc and magnesium. Liquid precursors containing a plurality of metals have a longer shelf life. The addition of an organic dopant precursor compound containing a metal, such as niobium, tantalum or bismuth, to the liquid precursor enhances control of the conductivity of the resulting transparent conductor.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 23, 2002
    Assignee: Symetrix Corporation
    Inventors: Jolanta Celinska, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan
  • Patent number: 6174213
    Abstract: Metal organic precursor compounds are dissolved in an organic solvent to form a nonaqueous liquid precursor. The liquid precursor is applied to the inner envelope surface of a fluorescent lamp and heated to form a metal oxide thin film layer. The metal oxide thin film layer may be a conductor, a protective layer or provide other functions. The films have a thickness of from 20 nm to 500 nm. A conductive layer comprising tin-antimony oxide with niobium dopant may be fabricated to have a differential resistivity profile by selecting a combination of precursor composition and annealing temperatures.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: January 16, 2001
    Assignees: Symetrix Corporation, Matsushita Electronics Corporation
    Inventors: Carlos A. Paz de Araujo, Jolanta Celinska, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan, Akihiro Matsuda, Gota Kano, Yoshio Yamaguchi, Tatsuo Morita, Hideo Nagai
  • Patent number: 6110531
    Abstract: A mist is generated by a venturi from liquid precursors containing compounds used in chemical vapor deposition, transported in carrier gas through tubing at ambient temperature, passed into a heated zone where the mist droplets are gasified at a temperature of between 100.degree. C. and 200.degree. C., which is lower than the decomposition temperature of the precursor compounds. The gasified liquid is injected through an inlet assembly into a deposition reactor in which there is a substrate heated to from 400.degree. C. to 600.degree. C., on which the gasified compounds decompose and form a thin film of layered superlattice compound.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: August 29, 2000
    Assignee: Symetrix Corporation
    Inventors: Carlos A. Paz de Araujo, Larry D. McMillan, Narayan Solayappan, Jeffrey W. Bacon
  • Patent number: 5788757
    Abstract: A metal organic liquid precursor solution includes metal organic complexes dispersed in an ester solvent. The ester solvent has medium length carbon chains to prevent the precipitation of strongly electropositive metals in solution. A liquid precursor solution is used to make thin film metal oxides of uniform thickness and consistent quality.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: August 4, 1998
    Assignees: Symetrix Corporation, Mitsubishi Materials Corporation
    Inventors: Hiroto Uchida, Nobuyuki Soyama, Kensuke Kageyama, Katsumi Ogi, Jeffrey W. Bacon, Michael C. Scott, Larry D. McMillan, Carlos A. Paz de Araujo