Patents by Inventor Jeffrey W. Sleights

Jeffrey W. Sleights has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741722
    Abstract: A method includes defining active regions on a substrate, forming a dummy gate stack material over exposed portions of the active regions of the substrate and non-active regions of the substrate, removing portions of the dummy gate stack material to expose portions of the active regions and non-active regions of the substrate and define dummy gate stacks, forming a gap-fill dielectric material over the exposed portions of the substrate and the source and drain regions, removing portions of the gap-fill dielectric material to expose the dummy gate stacks, removing the dummy gate stacks to form dummy gate trenches, forming dividers within the dummy gate trenches, depositing gate stack material inside the dummy gate trenches, over the dividers, and the gap-fill dielectric material, and removing portions of the gate stack material to define gate stacks.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul C. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 8742511
    Abstract: A transistor device includes multiple planar layers of channel material connecting a source region and a drain region, where the planar layers are formed in a stack of layers of a channel material; and a gate conductor formed around and between the planar layers of channel material.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20140131817
    Abstract: Disposable gate structures are formed on a semiconductor substrate. A planarization dielectric layer is deposited over the disposable gate structures and planarized to provide a top surface that is coplanar with top surface of the disposable gate structures. The planarization dielectric layer at this point includes gap-fill keyholes between narrowly spaced disposable gate structures. A printable dielectric layer is deposited over the planarization dielectric layer to fill the gap-fill keyholes. Areas of the printable dielectric layer over the gap-fill keyholes are illuminated with radiation that cross-links cross-linkable bonds in the material of the printable dielectric layer. Non-crosslinked portions of the printable dielectric layer are subsequently removed selective to crosslinked portions of the printable dielectric layer, which fills at least the upper portion of each gate-fill keyhole. The disposable gate structures are removed to form gate cavities.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul Chang, Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 8722472
    Abstract: A method of forming a hybrid semiconductor structure on an SOI substrate. The method includes an integrated process flow to form a nanowire mesh device and a FINFET device on the same SOI substrate. Also included is a semiconductor structure which includes the nanowire mesh device and the FINFET device on the same SOI substrate.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8723162
    Abstract: A nanowire tunnel field effect transistor (FET) device includes a channel region including a silicon portion having a first distal end and a second distal end, the silicon portion is surrounded by a gate structure disposed circumferentially around the silicon portion, a drain region including an doped silicon portion extending from the first distal end, a portion of the doped silicon portion arranged in the channel region, a cavity defined by the second distal end of the silicon portion and an inner diameter of the gate structure, and a source region including a doped epi-silicon portion epitaxially extending from the second distal end of the silicon portion in the cavity, a first pad region, and a portion of a silicon substrate.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Isaac Lauer, Amlan Majumdar, Jeffrey W. Sleight
  • Patent number: 8722492
    Abstract: A method for forming a nanowire tunnel device includes forming a nanowire suspended by a first pad region and a second pad region over a semiconductor substrate, forming a gate structure around a channel region of the nanowire, implanting a first type of ions at a first oblique angle in a first portion of the nanowire and the first pad region, and implanting a second type of ions at a second oblique angle in a second portion of the nanowire and the second pad region.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Steven J. Koester, Amlan Majumdar, Jeffrey W. Sleights
  • Patent number: 8716810
    Abstract: A memory cell has N?6 transistors, in which two are access transistors, at least one pair [say (N?2)/2] are pull-up transistors, and at least another pair [say (N?2)/2] are pull-down transistors. The pull-up and pull-down transistors are all coupled between the two access transistors. Each of the access transistors and the pull-up transistors are the same type, p-type or n-type. Each of the pull-down transistors is the other type, p-type or n-type. The access transistors are floating body devices. The pull-down transistors are non-floating body devices. The pull-up transistors may be floating or non-floating body devices. Various specific implementations and methods of making the memory cell are also detailed.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Steven J. Koester, Jeffrey W. Sleight
  • Patent number: 8716072
    Abstract: A substrate includes a first source region and a first drain region each having a first semiconductor layer disposed on a second semiconductor layer and a surface parallel to {110} crystalline planes and opposing sidewall surfaces parallel to the {110} crystalline planes; nanowire channel members suspended by the first source region and the first drain region, where the nanowire channel members include the first semiconductor layer, and opposing sidewall surfaces parallel to {100} crystalline planes and opposing faces parallel to the {110} crystalline planes. The substrate further includes a second source and drain regions having the characteristics of the first source and drain regions, and a single channel member suspended by the second source region and the second drain region and having the same characteristics as the nanowire channel members. A width of the single channel member is at least several times a width of a single nanowire member.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Josephine B. Chang, Leland Chang, Jeffrey W. Sleight
  • Patent number: 8709888
    Abstract: A method of forming a hybrid semiconductor structure on an SOI substrate. The method includes an integrated process flow to form a nanowire mesh device and a PDSOI device on the same SOI substrate. Also included is a semiconductor structure which includes the nanowire mesh device and the PDSOI device on the same SOI substrate.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8703576
    Abstract: Disposable gate structures are formed on a semiconductor substrate. A planarization dielectric layer is deposited over the disposable gate structures and planarized to provide a top surface that is coplanar with top surface of the disposable gate structures. The planarization dielectric layer at this point includes gap-fill keyholes between narrowly spaced disposable gate structures. A printable dielectric layer is deposited over the planarization dielectric layer to fill the gap-fill keyholes. Areas of the printable dielectric layer over the gap-fill keyholes are illuminated with radiation that cross-links cross-linkable bonds in the material of the printable dielectric layer. Non-crosslinked portions of the printable dielectric layer are subsequently removed selective to crosslinked portions of the printable dielectric layer, which fills at least the upper portion of each gate-fill keyhole. The disposable gate structures are removed to form gate cavities.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Paul Chang, Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 8698128
    Abstract: Non-planar semiconductor devices are provided that include at least one semiconductor nanowire suspended above a semiconductor oxide layer that is present on a first portion of a bulk semiconductor substrate. An end segment of the at least one semiconductor nanowire is attached to a first semiconductor pad region and another end segment of the at least one semiconductor nanowire is attached to a second semiconductor pad region. The first and second pad regions are located above and are in direct contact with a second portion of the bulk semiconductor substrate which is vertically offsets from the first portion. The structure further includes a gate surrounding a central portion of the at least one semiconductor nanowire, a source region located on a first side of the gate, and a drain region located on a second side of the gate which is opposite the first side of the gate.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey W. Sleight, Josephine B. Chang, Isaac Lauer, Shreesh Narasimha
  • Patent number: 8685823
    Abstract: A method for forming a field effect transistor device includes forming a nanowire suspended above a substrate, forming a dummy gate stack on a portion of the substrate and around a portion of the nanowire, removing exposed portions of the nanowire, epitaxially growing nanowire extension portions from exposed portions of the nanowire, depositing a layer of semiconductor material over exposed portions of the substrate, the dummy gate stack and the nanowire extension portions, and removing portions of the semiconductor material to form sidewall contact regions arranged adjacent to the dummy gate stack and contacting the nanowire extension portions.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy M. Cohen, Jeffrey W. Sleight
  • Patent number: 8680589
    Abstract: A method for forming a nanowire field effect transistor (FET) device includes forming a nanowire on a semiconductor substrate, forming a first gate structure on a first portion of the nanowire, forming a first protective spacer adjacent to sidewalls of the first gate structure and over portions of the nanowire extending from the first gate structure, removing exposed portions of the nanowire left unprotected by the first spacer, and epitaxially growing a doped semiconductor material on exposed cross sections of the nanowire to form a first source region and a first drain region.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Josephine B. Chang, Guy M. Cohen, Jeffrey W. Sleight
  • Patent number: 8673719
    Abstract: A semiconductor nanowire is formed integrally with a wraparound semiconductor portion that contacts sidewalls of a conductive cap structure located at an upper portion of a deep trench and contacting an inner electrode of a deep trench capacitor. The semiconductor nanowire is suspended from above a buried insulator layer. A gate dielectric layer is formed on the surfaces of the patterned semiconductor material structure including the semiconductor nanowire and the wraparound semiconductor portion. A wraparound gate electrode portion is formed around a center portion of the semiconductor nanowire and gate spacers are formed. Physically exposed portions of the patterned semiconductor material structure are removed, and selective epitaxy and metallization are performed to connect a source-side end of the semiconductor nanowire to the conductive cap structure.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Jeffrey W. Sleight
  • Patent number: 8673731
    Abstract: Techniques for gate workfunction engineering using a workfunction setting material to reduce short channel effects in planar CMOS devices are provided. In one aspect, a method of fabricating a CMOS device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. A patterned dielectric is formed on the wafer having trenches therein present over active areas in which a gate stack will be formed. Into each of the trenches depositing: (i) a conformal gate dielectric (ii) a conformal gate metal layer and (iii) a conformal workfunction setting metal layer. A volume of the conformal gate metal layer and/or a volume of the conformal workfunction setting metal layer deposited into a given one of the trenches are/is proportional to a length of the gate stack being formed in the given trench. A CMOS device is also provided.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8673698
    Abstract: A method of modifying a wafer having a semiconductor disposed on an insulator is provided and includes forming first and second nanowire channels connected at each end to semiconductor pads at first and second wafer regions, respectively, with second nanowire channel sidewalls being misaligned relative to a crystallographic plane of the semiconductor more than first nanowire channel sidewalls and displacing the semiconductor toward an alignment condition between the sidewalls and the crystallographic plane such that thickness differences between the first and second nanowire channels reflect the greater misalignment of the second nanowire channel sidewalls.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy M. Cohen, Jeffrey W. Sleight
  • Patent number: 8674342
    Abstract: A method for forming a nanowire field effect transistor (FET) device, the method includes forming a suspended nanowire over a semiconductor substrate, forming a gate structure around a portion of the nanowire, forming a protective spacer adjacent to sidewalls of the gate and around portions of nanowire extending from the gate, removing exposed portions of the nanowire left unprotected by the spacer structure, and epitaxially growing a doped semiconductor material on exposed cross sections of the nanowire to form a source region and a drain region.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey W. Sleight, Josephine B. Chang, Isaac Lauer, Shreesh Narasimha
  • Publication number: 20140073106
    Abstract: A method of forming a lateral bipolar transistor. The method includes forming a silicon on insulator (SOI) substrate having a bottom substrate layer, a buried oxide layer (BOX) on top of the substrate layer, and a silicon on insulator (SOI) layer on top of the BOX layer, forming a dummy gate and spacer on top of the silicon on insulator layer, doping the SOI layer with positive or negative ions, depositing an inter layer dielectric (ILD), using chemical mechanical planarization (CMP) to planarize the ILD, removing the dummy gate creating a gate trench which reveals the base of the dummy gate, doping the dummy gate base, depositing a layer of polysilicon on top of the SOI layer and into the gate trench, etching the layer of polysilicon so that it only covers the dummy gate base, and applying a self-aligned silicide process.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Gen Pei Lauer, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8669167
    Abstract: Techniques are provided for gate work function engineering in FIN FET devices using a work function setting material an amount of which is provided proportional to fin pitch. In one aspect, a method of fabricating a FIN FET device includes the following steps. A SOI wafer having a SOI layer over a BOX is provided. An oxide layer is formed over the SOI layer. A plurality of fins is patterned in the SOI layer and the oxide layer. An interfacial oxide is formed on the fins. A conformal gate dielectric layer, a conformal gate metal layer and a conformal work function setting material layer are deposited on the fins. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer deposited over the fins is proportional to a pitch of the fins. A FIN FET device is also provided.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8669615
    Abstract: Techniques are provided for gate work function engineering in FIN FET devices using a work function setting material an amount of which is provided proportional to fin pitch. In one aspect, a FIN FET device is provided. The FIN FET device includes a SOI wafer having an oxide layer and a SOI layer over a BOX, and a plurality of fins patterned in the oxide layer and the SOI layer; an interfacial oxide on the fins; and at least one gate stack on the interfacial oxide, the gate stack having (i) a conformal gate dielectric layer present, (ii) a conformal gate metal layer, and (iii) a conformal work function setting material layer. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer present in the gate stack is proportional to a pitch of the fins.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight