Patents by Inventor Jeffrey W. Voss

Jeffrey W. Voss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130216497
    Abstract: The invention provides compounds of Formula (I) and Formula (II) pharmaceutically acceptable salts, pro-drugs, biologically active metabolites, stereoisomers and isomers thereof wherein the variable are defined herein. The compounds of the invention are useful for treating immunological and oncological conditions.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 22, 2013
    Inventors: Neil Wishart, Maria A. Argiriadi, David J. Calderwood, Anna M. Ericsson, Bryan A. Fiamengo, Kristine E. Frank, Michael Friedman, Dawn M. George, Eric R. Goedken, Nathan S. Josephsohn, Biqin C. Li, Michael J. Morytko, Kent D. Stewart, Jeffrey W. Voss, Grier A. Wallace, Lu Wang, Kevin R. Woller
  • Patent number: 8431130
    Abstract: The present invention encompasses IL-18 binding proteins, particularly antibodies that bind human interleukin-18 (hIL-18). Specifically, the invention relates to antibodies that are entirely human antibodies. Preferred antibodies have high affinity for hIL-18 and/or that neutralize hIL-18 activity in vitro and in vivo. An antibody of the invention can be a full-length antibody or an antigen-binding portion thereof. Method of making and method of using the antibodies of the invention are also provided. The antibodies, or antibody portions, of the invention are useful for detecting hIL-18 and for inhibiting hIL-18 activity, e.g., in a human subject suffering from a disorder in which hIL-18 activity is detrimental.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 30, 2013
    Assignee: Abbott Laboratories
    Inventors: Tariq Ghayur, Boris Labkovsky, Jeffrey W. Voss, Larry Green, John Babcook, Xiao-chi Jia, James Wieler, Jaspal Singh Kang, Brad Hedberg
  • Publication number: 20110311474
    Abstract: The invention provides compounds of Formula (I) and Formula (II) pharmaceutically acceptable salts, pro-drugs, biologically active metabolites, stereoisomers and isomers thereof wherein the variable are defined herein. The compounds of the invention are useful for treating immunological and oncological conditions.
    Type: Application
    Filed: December 1, 2010
    Publication date: December 22, 2011
    Applicant: ABBOTT LABORATORIES
    Inventors: Neil WISHART, Maria A. ARGIRIADI, David J. CALDERWOOD, Anna M. ERICSSON, Bryan R. FIAMENGO, Kristine E. FRANK, Michael FRIEDMAN, Dawn M. GEORGE, Eric R. GOEDKEN, Nathan S. JOSEPHSOHN, Biqin C. LI, Michael J. MORYTKO, Kent D. STEWART, Jeffrey W. VOSS, Grier A. WALLACE, Lu WANG, Kevin R. WOLLER
  • Publication number: 20110190489
    Abstract: The invention provides a compound of Formula (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij), (Ik), or (Il) as defined herein, pharmaceutically acceptable salts, pro-drugs, biologically active metabolites, stereoisomers and isomers thereof wherein the variable are defined herein. The compounds of the invention are useful for treating immunological and oncological conditions.
    Type: Application
    Filed: December 1, 2010
    Publication date: August 4, 2011
    Applicant: Abbott Laboratories
    Inventors: Neil Wishart, Maria A. Argiriadi, David J. Calderwood, Anna M. Ericsson, Bryan R. Fiamengo, Kristine E. Frank, Michael Friedman, Dawn M. George, Eric R. Goedken, Nathan S. Josephsohn, Biqin C. Li, Michael J. Morytko, Kent D. Stewart, Jeffrey W. Voss, Grier A. Wallace, Lu Wang, Kevin R. Woller, Eric C. Breinlinger, Kelly D. Mullen, Gagandeep Somal
  • Patent number: 7968684
    Abstract: The present invention encompasses IL-18 binding proteins, particularly antibodies that bind human interleukin-18 (hIL-18). Specifically, the invention relates to antibodies that are entirely human antibodies. Preferred antibodies have high affinity for hIL-18 and/or that neutralize hIL-18 activity in vitro and in vivo. An antibody of the invention can be a full-length antibody or an antigen-binding portion thereof. Method of making and method of using the antibodies of the invention are also provided. The antibodies, or antibody portions, of the invention are useful for detecting hIL-18 and for inhibiting hIL-18 activity, e.g., in a human subject suffering from a disorder in which hIL-18 activity is detrimental.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: June 28, 2011
    Assignee: Abbott Laboratories
    Inventors: Tariq Ghayur, Boris Labkovsky, Jeffrey W. Voss, Larry Green, John Babcook, Xiao-chi Jia, James Wieler, Jaspal Singh Kang, Brad Hedberg
  • Publication number: 20100291088
    Abstract: The present invention encompasses IL-18 binding proteins, particularly antibodies that bind human interleukin-18 (hIL-18). Specifically, the invention relates to antibodies that are entirely human antibodies. Preferred antibodies have high affinity for hIL-18 and/or that neutralize hIL-18 activity in vitro and in vivo. An antibody of the invention can be a full-length antibody or an antigen-binding portion thereof. Method of making and method of using the antibodies of the invention are also provided. The antibodies, or antibody portions, of the invention are useful for detecting hIL-18 and for inhibiting hIL-18 activity, e.g., in a human subject suffering from a disorder in which hIL-18 activity is detrimental.
    Type: Application
    Filed: July 26, 2010
    Publication date: November 18, 2010
    Applicant: Abbott Laboratories
    Inventors: Tariq Ghayur, Boris Labkovsky, Jeffrey W. Voss, Larry Green, John Babcook, Xiao-chi Jia, James Wieler, Jaspal Singh Kang, Brad Hedberg
  • Publication number: 20090312338
    Abstract: The invention provides a compound of Formula (I) pharmaceutically acceptable salts, pro-drugs, biologically active metabolites, stereoisomers and isomers thereof wherein the variable are defined herein. The compounds of the invention are useful for treating immunological and oncological conditions.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 17, 2009
    Applicant: ABBOTT LABORATORIES
    Inventors: Neil Wishart, Maria A. Argiriadi, David J. Calderwood, Anna M. Ericsson, Bryan A. Fiamengo, Kristine E. Frank, Michael Friedman, Dawn M. George, Eric R. Goedken, Nathan S. Josephsohn, Biqin C. Li, Michael J. Morytko, Kent D. Stewart, Jeffrey W. Voss, Grier A. Wallace, Lu Wang, Kevin R. Woller
  • Patent number: 6783756
    Abstract: A method for regulating expression of a tet operator-linked gene in a cell of a subject is disclosed. In one embodiment, the method involves introducing into the cell a nucleic acid molecule encoding a tetracycline-controllable transactivator (tTA), the tTA comprising a Tet repressor operably linked to a polypeptide which directly or indirectly activates transcription in eucaryotic cells; and modulating the concentration of a tetracycline, or analogue thereof, in the subject. Alternatively, in another embodiment, the method involves obtaining the cell from the subject, introducing into the cell a first nucleic acid molecule which operatively links a gene to at least one tet operator sequence, introducing into the cell a second nucleic acid molecule encoding a tTA, to form a modified cell, administering the modified cell to the subject, and modulating the concentration of a tetracycline, or analogue thereof, in the subject. The first and second nucleic acid molecule can be within a single molecule (e.g.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: August 31, 2004
    Assignee: Abbott GmbH & Co., KG
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Publication number: 20020152487
    Abstract: Transgenic animals carrying two transgenes, the first coding for a transactivator fusion protein comprising a tet repressor and a polypeptide which directly or indirectly activates in eucaryotic cells, and the second comprising a gene operably linked to a minimal promotor operably linked to at least one tet operator sequence, are disclosed. Isolated DNA molecules (e.g., targeting vectors) for integrating a polynucleotide sequence encoding a transactivator of the invention at a predetermined location within a second target DNA molecule by homologous recombination are also disclosed. Transgenic animals having the DNA molecules of the invention integrated at a predetermined location in a chromosome by homologous recombination are also encompassed by the invention. Methods to regulate the expression of a tet operator linked-gene of interest by administering tetracycline or a tetracycline analogue to an animal of the invention are also disclosed.
    Type: Application
    Filed: June 25, 2001
    Publication date: October 17, 2002
    Applicant: BASF Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Publication number: 20020086426
    Abstract: A method for regulating expression of a tet operator-linked gene in a cell of a subject is disclosed. In one embodiment, the method involves introducing into the cell a nucleic acid molecule encoding a tetracycline-controllable transactivator (tTA), the tTA comprising a Tet repressor operably linked to a polypeptide which directly or indirectly activates transcription in eucaryotic cells; and modulating the concentration of a tetracycline, or analogue thereof, in the subject. Alternatively, in another embodiment, the method involves obtaining the cell from the subject, introducing into the cell a first nucleic acid molecule which operatively links a gene to at least one tet operator sequence, introducing into the cell a second nucleic acid molecule encoding a tTA, to form a modified cell, administering the modified cell to the subject, and modulating the concentration of a tetracycline, or analogue thereof, in the subject. The first and second nucleic acid molecule can be within a single molecule (e.g.
    Type: Application
    Filed: February 5, 2001
    Publication date: July 4, 2002
    Applicant: BASF Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Publication number: 20020077307
    Abstract: A method for regulating expression of a tet operator-linked gene in a cell of a subject is disclosed. In one embodiment, the method involves introducing into the cell a nucleic acid molecule encoding a tetracycline-controllable transactivator (tTA), the tTA comprising a Tet repressor operably linked to a polypeptide which directly or indirectly activates transcription in eucaryotic cells; and modulating the concentration of a tetracycline, or analogue thereof, in the subject. Alternatively, in another embodiment, the method involves obtaining the cell from the subject, introducing into the cell a first nucleic acid molecule which operatively links a gene to at least one tet operator sequence, introducing into the cell a second nucleic acid molecule encoding a tTA, to form a modified cell, administering the modified cell to the subject, and modulating the concentration of a tetracycline, or analogue thereof, in the subject. The first and second nucleic acid molecule can be within a single molecule (e.g.
    Type: Application
    Filed: March 30, 1999
    Publication date: June 20, 2002
    Inventors: HERMANN BUJARD, MANFRED GOSSEN, JOCHEN G. SALFELD, JEFFREY W. VOSS
  • Patent number: 6252136
    Abstract: Transgenic animals carrying two transgenes, the first coding for a transactivator fusion protein comprising a tet repressor and a polypeptide which directly or indirectly activates in eucaryotic cells, and the second comprising a gene operably linked to a minimal promoter operably linked to at least one tet operator sequence, are disclosed. Isolated DNA molecules (e.g., targeting vectors) for integrating a polynucleotide sequence encoding a transactivator of the invention at a predetermined location within a second target DNA molecule by homologous recombination are also disclosed. Transgenic animals having the DNA molecules of the invention integrated at a predetermined location in a chromosome by homologous recombination are also encompassed by the invention. Methods to regulate the expression of a tet operator linked-gene of interest by administering tetracycline or a tetracycline analogue to an animal of the invention are also disclosed.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: June 26, 2001
    Assignees: BASF Aktiengesellschaft, Knoll Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Patent number: 5922927
    Abstract: Transgenic mice carrying two transgenes, the first coding for a transactivator fusion protein comprising a tet repressor and a polypeptide which directly or indirectly activates in eucaryotic cells, and the second comprising a gene operably linked to a minimal promoter operably linked to at least one tet operator sequence, are disclosed. Isolated DNA molecules (e.g., targeting vectors) for integrating a polynucleotide sequence encoding a transactivator of the invention at a predetermined location within a second target DNA molecule by homologous recombination are also disclosed. Transgenic mice having the DNA molecules of the invention integrated at a predetermined location in a chromosome by homologous recombination are also encompassed by the invention. Methods to regulate the expression of a tet operator linked-gene of interest by administering tetracycline or a tetracycline analogue to a mouse of the invention are also disclosed.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: July 13, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Patent number: 5888981
    Abstract: A method for regulating expression of a tet operator-linked gene in a cell of a subject is disclosed. In one embodiment, the method involves introducing into the cell a nucleic acid molecule encoding a tetracycline-controllable transactivator (tTA), the tTA comprising a Tet repressor operably linked to a polypeptide which directly or indirectly activates transcription in eucaryotic cells; and modulating the concentration of a tetracycline, or analogue thereof, in the subject. Alternatively, in another embodiment, the method involves obtaining the cell from the subject, introducing into the cell a first nucleic acid molecule which operatively links a gene to at least one tet operator sequence, introducing into the cell a second nucleic acid molecule encoding a tTA, to form a modified cell, administering the modified cell to the is subject, and modulating the concentration of a tetracycline, or analogue thereof, in the subject. The first and second nucleic acid molecule can be within a single molecule (e.g.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 30, 1999
    Assignees: BASF Aktiengesellschaft, Knoll Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Patent number: 5859310
    Abstract: Transgenic mice carrying two transgenes, the first coding for a transactivator fusion protein comprising a tet repressor and a polypeptide which directly or indirectly activates transcription of a tet operator-linked gene in eucaryotic cells, and the second comprising a gene operably linked to a minimal promotor operably linked to at least one tet operator sequence, are disclosed. Isolated DNA molecules (e.g., targeting vectors) for integrating a polynucleotide sequence encoding a transactivator of the invention at a predetermined location within a second target DNA molecule by homologous recombination are also disclosed. Transgenic mice having the DNA molecules of the invention integrated at a predetermined location in a chromosome by homologous recombination are also encompassed by the invention. Methods to regulate the expression of a tet operator linked-gene of interest by administering tetracycline or a tetracycline analogue to a mouse of the invention are also disclosed.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 12, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss
  • Patent number: 5700640
    Abstract: Methods for stimulating gamma globin gene expression in a mammalian cell comprising contacting the cell with a compound selected from valeric acid and certain isomers, derivatives or salts thereof, including isovaleric acid, 4-pentynoic acid and methylthioacetic acid, or an inhibitor of a short chain fatty acyl CoA dehydrogenase, or an activator of protein kinase C are disclosed. The methods of the invention are particularly useful for ameliorating .beta.-globin disorders, such as sickle cell anemia or .beta.-thalassemia. The method of the invention can also be used to prevent or ameliorate malaria in a mammal. The compounds of the invention can also be used to stimulate differentiation of a cell. Pharmaceutical compositions of the active compounds of the invention are also disclosed.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: December 23, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Jeffrey W. Voss, Connie Caron
  • Patent number: 5650298
    Abstract: Transgenic animals carrying two transgenes, the first coding for a transactivator fusion protein comprising a tet repressor and a polypeptide which directly or indirectly activates in eucaryotic cells, and the second comprising a gene operably linked to a minimal promoter operably linked to at least one tet operator sequence, are disclosed. Isolated DNA molecules (e.g., targeting vectors) for integrating a polynucleotide sequence encoding a transactivator of the invention at a predetermined location within a second target DNA molecule by homologous recombination are also disclosed. Transgenic animals having the DNA molecules of the invention integrated at a predetermined location in a chromosome by homologous recombination are also encompassed by the invention. Methods to regulate the expression of a tet operator linked-gene of interest by administering tetracycline or a tetracycline analogue to an animal of the invention are also disclosed.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: July 22, 1997
    Assignees: BASF Aktiengesellschaft, Knoll Aktiengesellschaft
    Inventors: Hermann Bujard, Manfred Gossen, Jochen G. Salfeld, Jeffrey W. Voss