Patents by Inventor Jeffrey William Kysar

Jeffrey William Kysar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10550365
    Abstract: An elastomeric substrate comprises a surface with regions of heterogeneous rigidity, wherein the regions are formed by exposing the elastomeric substrate to an energy source to form the regions such that the regions include a rigidity pattern comprising spots.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 4, 2020
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Manus J. P. Biggs, Ryan Cooper, Jinyu Liao, Teresa Anne Fazio, Carl Fredrik Oskar Dahlberg, Jeffrey William Kysar, Samuel Jonas Wind
  • Publication number: 20170275585
    Abstract: An elastomeric substrate comprises a surface with regions of heterogeneous rigidity, wherein the regions are formed by exposing the elastomeric substrate to an energy source to form the regions such that the regions include a rigidity pattern comprising spots.
    Type: Application
    Filed: April 10, 2017
    Publication date: September 28, 2017
    Inventors: Manus J.P. Biggs, Ryan Cooper, Jinyu Liao, Teresa Anne Fazio, Carl Fredrik Oskar Dahlberg, Jeffrey William Kysar, Samuel Jonas Wind
  • Publication number: 20150125957
    Abstract: An elastomeric substrate comprises a surface with regions of heterogeneous rigidity, wherein the regions are formed by exposing the elastomeric substrate to an energy source to form the regions such that the regions include a rigidity pattern comprising spots.
    Type: Application
    Filed: October 24, 2014
    Publication date: May 7, 2015
    Inventors: Manus J.P. Biggs, Ryan Cooper, Jinyu Liao, Teresa Anne Fazio, Carl Fredrik Oskar Dahlberg, Jeffrey William Kysar, Shalom Jonas Wind
  • Patent number: 8889766
    Abstract: A method of forming a solid-state polymer can include grafting a graft polymer to nanoparticles to provide grafted nanoparticles, and dispersing the grafted nanoparticles in a polymer matrix to provide a specified loading of the grafted nanoparticles within the polymer matrix to form a solid-state polymer. A solid-state polymer can include grafted nanoparticles comprising a polymer graft grafted to nanoparticles, and a polymer matrix, in which the grafted nanoparticles are dispersed to form a solid-state polymer, the dispersion configured to provide a specified loading of the grafted nanoparticles within the solid-state polymer.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: November 18, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Jeffrey William Kysar, Sanat K. Kumar, Benjamin Fragneaud, Damien Maillard
  • Patent number: 8418547
    Abstract: Force, pressure, or stiffness measurement or calibration can be provided, such as by using a graphene or other sheet membrane, which can provide a specified number of monolayers suspended over a substantially circular well. In an example, the apparatus can include a substrate, including a substantially circular well. A deformable sheet membrane can be suspended over the well. The membrane can be configured to include a specified integer number of one or more monolayers. A storage medium can comprise accompanying information about the suspended membrane or the substrate that, with a deflection displacement response of the suspended membrane to an applied force or pressure, provides a measurement of the applied force or pressure.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: April 16, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Jeffrey William Kysar, James C. Hone, Changgu Lee, Xiaoding Wei
  • Publication number: 20120277377
    Abstract: A method of forming a solid-state polymer can include grafting a graft polymer to nanoparticles to provide grafted nanoparticles, and dispersing the grafted nanoparticles in a polymer matrix to provide a specified loading of the grafted nanoparticles within the polymer matrix to form a solid-state polymer. A solid-state polymer can include grafted nanoparticles comprising a polymer graft grafted to nanoparticles, and a polymer matrix, in which the grafted nanoparticles are dispersed to form a solid-state polymer, the dispersion configured to provide a specified loading of the grafted nanoparticles within the solid-state polymer.
    Type: Application
    Filed: March 1, 2012
    Publication date: November 1, 2012
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Jeffrey William Kysar, Sanat K. Kumar, Benjamin Fragneaud, Damien Maillard
  • Publication number: 20110185458
    Abstract: Force, pressure, or stiffness measurement or calibration can be provided, such as by using a graphene or other sheet membrane, which can provide a specified number of monolayers suspended over a substantially circular well. In an example, the apparatus can include a substrate, including a substantially circular well. A deformable sheet membrane can be suspended over the well. The membrane can be configured to include a specified integer number of one or more monolayers. A storage medium can comprise accompanying information about the suspended membrane or the substrate that, with a deflection displacement response of the suspended membrane to an applied force or pressure, provides a measurement of the applied force or pressure.
    Type: Application
    Filed: August 6, 2009
    Publication date: July 28, 2011
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jeffrey William Kysar, James C. Hone, Changgu Lee, Xiaoding Wei