Patents by Inventor Jeffry Disko

Jeffry Disko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10777852
    Abstract: A battery system includes a main electrochemical cell that includes a cathode and an anode, a cathode tab electrically coupled to the cathode, and an anode tab electrically coupled to the anode. A second electrochemical cell is electrically coupled to the cathode tab and the anode tab. An interrupt device, such as a bi-stable metal disc, is operably coupled to the second electrochemical cell and at least one of the cathode tab or the anode tab. Upon overcharging of the main electrochemical cell, the voltage between the cathode tab and the anode tab causes the second electrochemical cell to generate gases that triggers the interrupt device, which in turn disconnects at least one of the cathode tab or the anode tab, thereby protecting the main electrochemical cell from further damages.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 15, 2020
    Assignees: 24M Technologies, Inc., Kyocera Corporation
    Inventors: William Henry Woodford, Naoki Ota, Takaaki Fukushima, Jeffry Disko, Junzheng Chen
  • Patent number: 10734672
    Abstract: Embodiments described herein relate generally to electrochemical cells including a selectively permeable membrane and systems and methods for manufacturing the same. In some embodiments, the selectively permeable membrane can include a solid-state electrolyte material. In some embodiments, electrochemical cells can include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and the selectively permeable membrane disposed therebetween. In some embodiments, the cathode and/or anode can include a slurry of an active material and a conductive material in a liquid electrolyte. In some embodiments, a catholyte can be different from an anolyte. In some embodiments, the catholyte can be optimized to improve the redox electrochemistry of the cathode and the anolyte can be optimized to improve the redox electrochemistry of the anode. In some embodiments, the selectively permeable membrane can be configured to isolate the catholyte from the anolyte.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: August 4, 2020
    Assignee: 24M Technologies, Inc.
    Inventors: Junzheng Chen, Naoki Ota, Jeffry Disko, Yuki Kusachi
  • Patent number: 10566603
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 18, 2020
    Assignee: 24M Technologies, Inc.
    Inventors: Alexander H. Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang
  • Publication number: 20190348705
    Abstract: Embodiments described herein relate generally to electrochemical cells including a selectively permeable membrane and systems and methods for manufacturing the same. In some embodiments, the selectively permeable membrane can include a solid-state electrolyte material. In some embodiments, electrochemical cells can include a cathode disposed on a cathode current collector, an anode disposed on an anode current collector, and the selectively permeable membrane disposed therebetween. In some embodiments, the cathode and/or anode can include a slurry of an active material and a conductive material in a liquid electrolyte. In some embodiments, a catholyte can be different from an anolyte. In some embodiments, the catholyte can be optimized to improve the redox electrochemistry of the cathode and the anolyte can be optimized to improve the redox electrochemistry of the anode. In some embodiments, the selectively permeable membrane can be configured to isolate the catholyte from the anolyte.
    Type: Application
    Filed: January 8, 2019
    Publication date: November 14, 2019
    Inventors: Junzheng CHEN, Naoki OTA, Jeffry DISKO, Yuki KUSACHI
  • Publication number: 20190245242
    Abstract: Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that include a gel polymer additive such that the electrodes demonstrate longer cycle life while significantly retaining the electronic performance of the electrodes and the electrochemical cells formed therefrom. In some embodiments, a semi-solid electrode can include about 20% to about 75% by volume of an active material, about 0.5% to about 25% by volume of a conductive material, and about 20% to about 70% by volume of an electrolyte. The electrolyte further includes about 0.01% to about 1.5% by weight of a polymer additive. In some embodiments, the electrolyte can include about 0.1% to about 0.7% of the polymer additive.
    Type: Application
    Filed: October 5, 2018
    Publication date: August 8, 2019
    Inventors: Taison TAN, Naoki OTA, Jeffry DISKO
  • Patent number: 10230128
    Abstract: Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that have damage tolerance, and in particular, are tolerant to physical damage due to short circuit, crushing, or overheating. In some embodiments, an electrochemical cell includes a positive electrode, a negative electrode and an ion-permeable membrane separating the positive electrode and the negative electrode. At least one of the positive electrode and the negative electrode can include a semi-solid ion-storing redox composition which has a thickness of at least about 250 ?m. The electrochemical cell can have a first operating voltage in a first planar configuration and a second operating voltage in a second non-planar configuration such that the first operating voltage and the second operating voltage are substantially similar. In some embodiments, the electrochemical cell has a bend axis such that the electrochemical cell is bent about the bend axis in the second non-planar configuration.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: March 12, 2019
    Assignee: 24M Technologies, Inc.
    Inventors: Yet-Ming Chiang, Taison Tan, Jeffry Disko, Richard Holman, Mihai Duduta
  • Patent number: 10122044
    Abstract: Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that include a gel polymer additive such that the electrodes demonstrate longer cycle life while significantly retaining the electronic performance of the electrodes and the electrochemical cells formed therefrom. In some embodiments, a semi-solid electrode can include about 20% to about 75% by volume of an active material, about 0.5% to about 25% by volume of a conductive material, and about 20% to about 70% by volume of an electrolyte. The electrolyte further includes about 0.01% to about 1.5% by weight of a polymer additive. In some embodiments, the electrolyte can include about 0.1% to about 0.7% of the polymer additive.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: November 6, 2018
    Assignee: 24M Technologies, Inc.
    Inventors: Taison Tan, Naoki Ota, Jeffry Disko
  • Publication number: 20180287220
    Abstract: A battery system includes a main electrochemical cell that includes a cathode and an anode, a cathode tab electrically coupled to the cathode, and an anode tab electrically coupled to the anode. A second electrochemical cell is electrically coupled to the cathode tab and the anode tab. An interrupt device, such as a bi-stable metal disc, is operably coupled to the second electrochemical cell and at least one of the cathode tab or the anode tab. Upon overcharging of the main electrochemical cell, the voltage between the cathode tab and the anode tab causes the second electrochemical cell to generate gases that triggers the interrupt device, which in turn disconnects at least one of the cathode tab or the anode tab, thereby protecting the main electrochemical cell from further damages.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 4, 2018
    Inventors: William Henry WOODFORD, Naoki OTA, Takaaki FUKUSHIMA, Jeffry DISKO, Junzheng Chen
  • Publication number: 20170025674
    Abstract: An energy storage device includes a positive electrode current collector, a negative electrode current collector and a separator disposed between the positive electrode current collector and the negative electrode current collector. The separator is spaced from the positive electrode current collector, thereby at least partially defining a positive electroactive zone, and the separator may be spaced from the negative electrode current collector, thereby at least partially defining a negative electroactive zone. The energy storage device includes a semi-solid electrode with a thickness in the range of about 200 ?m to about 2,000 ?m, located in the positive electroactive zone and/or the negative electroactive zone. The semi-solid electrode may also include a suspension of an ion-storing solid phase material in a non-aqueous liquid electrolyte.
    Type: Application
    Filed: February 2, 2016
    Publication date: January 26, 2017
    Inventors: Taison TAN, Naoki OTA, William WOODFORD, Jeffry DISKO, Takaaki FUKUSHIMA, Lauren SIMPSON, Richard HOLMAN, Mihai DUDUTA, Hiuling Zoe YU
  • Publication number: 20160190544
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Application
    Filed: October 29, 2015
    Publication date: June 30, 2016
    Inventors: Alexander H. SLOCUM, Tristan DOHERTY, Ricardo BAZZARELLA, James C. CROSS, III, Pimpa LIMTHONGKUL, Mihai DUDUTA, Jeffry DISKO, Allen YANG, Throop WILDER, William Craig CARTER, Yet-Ming CHIANG
  • Patent number: 9203092
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 1, 2015
    Assignee: 24M Technologies, Inc.
    Inventors: Alexander Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang
  • Publication number: 20150295272
    Abstract: Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that have damage tolerance, and in particular, are tolerant to physical damage due to short circuit, crushing, or overheating. In some embodiments, an electrochemical cell includes a positive electrode, a negative electrode and an ion-permeable membrane separating the positive electrode and the negative electrode. At least one of the positive electrode and the negative electrode can include a semi-solid ion-storing redox composition which has a thickness of at least about 250 ?m. The electrochemical cell can have a first operating voltage in a first planar configuration and a second operating voltage in a second non-planar configuration such that the first operating voltage and the second operating voltage are substantially similar. In some embodiments, the electrochemical cell has a bend axis such that the electrochemical cell is bent about the bend axis in the second non-planar configuration.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 15, 2015
    Applicant: 24M Technologies, Inc.
    Inventors: Yet-Ming Chiang, Taison Tan, Jeffry Disko, Richard Holman, Mihai Duduta
  • Publication number: 20150024279
    Abstract: Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that include a gel polymer additive such that the electrodes demonstrate longer cycle life while significantly retaining the electronic performance of the electrodes and the electrochemical cells formed therefrom. In some embodiments, a semi-solid electrode can include about 20% to about 75% by volume of an active material, about 0.5% to about 25% by volume of a conductive material, and about 20% to about 70% by volume of an electrolyte. The electrolyte further includes about 0.01% to about 1.5% by weight of a polymer additive. In some embodiments, the electrolyte can include about 0.1% to about 0.7% of the polymer additive.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 22, 2015
    Inventors: Taison TAN, Naoki OTA, Jeffry DISKO
  • Publication number: 20140030623
    Abstract: A static semi-solid filled energy storage system having a plurality of static cells, each cell comprising an ion permeable membrane separating positive and negative current collectors and positioned to define positive and negative electroactive zones. Electroactive material is delivered to the electroactive zones via a plurality of manifolds. The manifolds are injected with an electronically insulating barrier that is configured to seal each static cell from its neighboring static cell. Valves are used to allow gas created from the electrochemical reactions to be released from the system. Coolant may be introduced to dissipate heat from the system.
    Type: Application
    Filed: June 11, 2013
    Publication date: January 30, 2014
    Applicant: 24M Technologies, Inc.
    Inventors: Yet-Ming Chiang, William Craig Carter, Pimpa Limthongkul, Ricardo Bazzarella, Mihai Duduta, Jeffry Disko, James Cross III, Alexander H. Slocum
  • Publication number: 20130055559
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 7, 2013
    Applicant: 24M Technologies, Inc.
    Inventors: Alexander Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang