Patents by Inventor Jeffry J. Grainger

Jeffry J. Grainger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10016271
    Abstract: A prosthetic heart valve (100) includes a flexible anchoring member (110) at least partially surrounding and coupled to an inner valve support (120). The device can further include a prosthetic valve (130) coupled to, mounted within, or otherwise carried by the valve support. The valve support includes a plurality of posts (122) connected circumferentially by a plurality of struts (124), where the posts extend along an axial direction generally parallel to the longitudinal axis (101) and the struts extend circumferentially around and transverse to the longitudinal axis. The posts extend an entire longitudinal height HI of the valve support 120. The device also includes one or more sealing members (140) and tissue engaging elements (170) like spikes.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: July 10, 2018
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Publication number: 20180177486
    Abstract: Implantable devices for continuously monitoring vascular lumen dimensions, in particular in the inferior vena cava (IVC) for determining heart failure status of a patient. Related therapy systems as well as monitoring and therapy methods are also disclosed. Devices include active or passive marker elements placed in contact with, adhered to or injected into the vessel wall to generate or reflect signals from which lumen diameter may be determined. Disclosed devices may be fully implantable and self-contained including capabilities for wirelessly communication monitored parameters.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 28, 2018
    Inventors: Hanson S. Gifford, III, Mark E. Deem, John Morriss, Douglas S. Sutton, Jeffry J. Grainger, Vijaykumar Rajasekhar
  • Patent number: 9901443
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having a first portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a valve support coupled to a second portion of the anchoring member, configured to support a prosthetic valve and having a cross-sectional shape. In some embodiments, the first portion of the anchoring member is mechanically isolated from the valve support such that the cross-sectional shape of the valve support remains sufficiently stable that the prosthetic valve remains competent when the anchoring member is deformed in the non-circular shape.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: February 27, 2018
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Publication number: 20180008413
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Application
    Filed: August 28, 2017
    Publication date: January 11, 2018
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Patent number: 9770331
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 26, 2017
    Assignee: Twelve, Inc.
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Publication number: 20170071594
    Abstract: Various devices, systems and methods for knotless suturing of tissue are disclosed. These devices allow sutures to be anchored to bone, and more specifically provide a suture anchor which eliminates the need for knotting the suture. Thus, damaged tissue may be re-attached to a substrate tissue. The anchors have a minimum of moving parts may be suited to being a single molded polymer construction. The anchors will find particular utility in hip and shoulder arthroscopy, e.g. labral re-attachment and similar procedures.
    Type: Application
    Filed: November 28, 2016
    Publication date: March 16, 2017
    Inventors: Michael Hendricksen, Mark Hirotsuka, Mark Deem, Jeffry J. Grainger, Darin Gittings
  • Publication number: 20160324640
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 10, 2016
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Patent number: 9421098
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 23, 2016
    Assignee: Twelve, Inc.
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Publication number: 20150335429
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having a first portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a valve support coupled to a second portion of the anchoring member, configured to support a prosthetic valve and having a cross-sectional shape. In some embodiments, the first portion of the anchoring member is mechanically isolated from the valve support such that the cross-sectional shape of the valve support remains sufficiently stable that the prosthetic valve remains competent when the anchoring member is deformed in the non-circular shape.
    Type: Application
    Filed: August 7, 2015
    Publication date: November 26, 2015
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Publication number: 20150142100
    Abstract: A prosthetic heart valve (100) includes a flexible anchoring member (110) at least partially surrounding and coupled to an inner valve support (120). The device can further include a prosthetic valve (130) coupled to, mounted within, or otherwise carried by the valve support. The valve support includes a plurality of posts (122) connected circumferentially by a plurality of struts (124), where the posts extend along an axial direction generally parallel to the longitudinal axis (101) and the struts extend circumferentially around and transverse to the longitudinal axis. The posts extend an entire longitudinal height HI of the valve support 120. The device also includes one or more sealing members (140) and tissue engaging elements (170) like spikes.
    Type: Application
    Filed: October 19, 2012
    Publication date: May 21, 2015
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Patent number: 8986362
    Abstract: Prosthesis delivery devices and methods are provided that enable precise control of prosthesis position during deployment. The prosthesis delivery devices may carry multiple prostheses and include deployment mechanisms for delivery of a selectable number of prostheses. Control mechanisms are provided in the prosthesis delivery devices that control either or both of the axial and rotational positions of the prostheses during deployment. This enables the deployment of multiple prostheses at a target site with precision and predictability, eliminating excessive spacing or overlap between prostheses. In particular embodiments, the prostheses of the invention are deployed in stenotic lesions in coronary or peripheral arteries, or in other vascular locations.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: March 24, 2015
    Assignee: J.W. Medical Systems Ltd.
    Inventors: David W. Snow, Joseph Karratt, Jeffry J. Grainger, Denise Demarais
  • Patent number: 8740968
    Abstract: Blood vessels and other body lumens are stented using stent structures comprising a plurality of radially expansible rings where at least some of the rings comprise axially extending elements which interleave with axially extending elements on adjacent unconnected rings. The ring structures may be open cell structures or closed cell structures, and the axially extending elements will typically be formed as part of the open cell or closed cell structure.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: June 3, 2014
    Assignee: J.W. Medical Systems Ltd.
    Inventors: Stephen Kao, Bernard Andreas, Hanson S. Gifford, III, Mark E. Deem, David W. Snow, Jeffry J. Grainger
  • Publication number: 20140142627
    Abstract: Various devices, systems and methods for knotless suturing of tissue are disclosed. These devices allow sutures to be anchored to bone, and more specifically provide a suture anchor which eliminates the need for knotting the suture. Thus, damaged tissue may be re-attached to a substrate tissue. The anchors have a minimum of moving parts may be suited to being a single molded polymer construction. The anchors will find particular utility in hip and shoulder arthroscopy, e.g. labral re-attachment and similar procedures.
    Type: Application
    Filed: April 2, 2013
    Publication date: May 22, 2014
    Applicant: Foundry Newco XI, Inc.
    Inventors: Michael Hendricksen, Mark Hirotsuka, Mark Deem, Jeffry J. Grainger, Darin Gittings
  • Patent number: 8460358
    Abstract: Wire-guided interventional devices and methods are provided which enable faster and easier catheter exchanges. The interventional devices include a catheter shaft and a guidewire tube wherein the catheter shaft and the guidewire tube each have a length sufficient to extend to the vascular penetration when the interventional device is positioned at the treatment site. In some embodiments, a collar is disposed around the catheter shaft and guidewire tube that automatically inserts or removes the guidewire from the guidewire tube or automatically collapses or extends the guidewire tube as the catheter is introduced or withdrawn.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: June 11, 2013
    Assignee: J.W. Medical Systems, Ltd.
    Inventors: Bernard Andreas, Jeffry J. Grainger
  • Publication number: 20130060321
    Abstract: Blood vessels and other body lumens are stented using stent structures comprising a plurality of radially expansible rings where at least some of the rings comprise axially extending elements which interleave with axially extending elements on adjacent unconnected rings. The ring structures may be open cell structures or closed cell structures, and the axially extending elements will typically be formed as part of the open cell or closed cell structure.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: J.W. Medical Systems Ltd.
    Inventors: Stephen KAO, Bernard ANDREAS, Hanson S. GIFFORD, III, Mark E. DEEM, David W. SNOW, Jeffry J. GRAINGER
  • Patent number: 8282680
    Abstract: Blood vessels and other body lumens are stented using stent structures comprising a plurality of radially expansible rings where at least some of the rings comprise axially extending elements which interleave with axially extending elements on adjacent unconnected rings. The ring structures may be open cell structures or closed cell structures, and the axially extending elements will typically be formed as part of the open cell or closed cell structure.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 9, 2012
    Assignee: J. W. Medical Systems Ltd.
    Inventors: Stephen Kao, Bernard Andreas, Hanson S. Gifford, III, Mark E. Deem, David W. Snow, Jeffry J. Grainger
  • Publication number: 20120165930
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 28, 2012
    Applicant: The Foundy, LLC
    Inventors: Hanson S. GIFFORD, III, James I. FANN, John MORRISS, Mark DEEM, Jeffry J. GRAINGER
  • Patent number: 8080048
    Abstract: Apparatus and methods for delivering stents to bifurcated vessels involve delivering a first stent in a main branch of a vessel using a stent delivery catheter and delivering a second stent in a side branch of the vessel, without removing the stent delivery catheter from the patient. In various embodiments, multiple stents may be placed in either or both of the main and side branches. In some embodiments, stents in main and side branches are separate and do not touch, while in other embodiments a side branch stent may extend through a sidewall opening in a main branch stent. Stent length may optionally be adjusted in situ, and some embodiments provide for predilatation of one or more lesions.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: December 20, 2011
    Assignee: Xtent, Inc.
    Inventors: Bernard Andreas, Jeffry J. Grainger
  • Patent number: 7918881
    Abstract: A stent deployment system includes a catheter shaft, an expandable member mounted to the catheter shaft, and one or more stents or stent segments slidably positioned on the expandable member. The stent deployment system is adapted for deployment of stents or stent segments in very long lesions and in tapered and curved vessels. The stent deployment system facilitates slidable movement of a stent in a distal direction relative to the expandable member while inhibiting slidable movement in a proximal direction relative to the expandable member.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: April 5, 2011
    Assignee: Xtent, Inc.
    Inventors: Bernard Andreas, David W. Snow, Jeffry J. Grainger
  • Publication number: 20100292733
    Abstract: Various devices, systems and methods for knotless suturing of tissue are disclosed. These devices allow sutures to be anchored to bone, and more specifically provide a suture anchor which eliminates the need for knotting the suture. Thus, damaged tissue may be re-attached to a substrate tissue. The anchors have a minimum of moving parts may be suited to being a single molded polymer construction. The anchors will find particular utility in hip and shoulder arthroscopy, e.g. labral re-attachment and similar procedures.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 18, 2010
    Applicant: Foundry Newco XI, Inc.
    Inventors: Michael Hendricksen, Mark Hirotsuka, Mark Deem, Jeffry J. Grainger, Darin C. Gittings