Patents by Inventor Jeffry Kelber

Jeffry Kelber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220271334
    Abstract: A method of stabilizing a garnet-type solid-state electrolyte (SSE) includes obtaining pellets of SSE, removing surface impurities of the SSE, and depositing a passivation layer onto the SSE after the surface impurities are removed, the passivation layer including two of boron, carbon, and nitrogen.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 25, 2022
    Inventors: Leela Mohana Reddy Arava, Sathish Rajendren, Jeffry Kelber, Aparna Pilli
  • Patent number: 9761660
    Abstract: Manufacturable spin and spin-polaron interconnects are disclosed that do not exhibit the same increase in resistivity shown by Cu interconnects associated with decreasing linewidth. These interconnects rely on the transmission of spin as opposed to charge. Two types of graphene based interconnect approaches are explored, one involving the injection and diffusive transport of discrete spin-polarized carriers, and the other involving coherent spin polarization of graphene charge carriers due to exchange interactions with localized substrate spins. Such devices are manufacturable as well as scalable (methods for their fabrication exist, and the interconnects are based on direct growth, rather than physical transfer or metal catalyst formation). Performance at or above 300 K, as opposed to cryogenic temperatures, is the performance criteria.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: September 12, 2017
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventor: Jeffry Kelber
  • Patent number: 9748340
    Abstract: Graphene FETs exhibit low power consumption and high switching rates taking advantage of the excellent mobility in graphene deposited on a rocksalt oxide (111) by chemical vapor deposition, plasma vapor deposition or molecular beam epitaxy. A source, drain and electrical contacts are formed on the graphene layer. These devices exhibit band gap phenomena on the order of greater than about 0.5 eV, easily high enough to serve as high speed low power logic devices. Integration of this construction technology, based on the successful deposition of few layer graphene on the rocksalt oxide (111) with SI CMOS is straightforward.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 29, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventor: Jeffry Kelber
  • Patent number: 9620654
    Abstract: A voltage switchable coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A chrome oxide layer is formed on the cobalt by MBE at room at UHV at room temperature. There was thin cobalt oxide interface between the chrome oxide and the cobalt. Other magnetic materials may be employed. A few ML field of graphene is deposited on the chrome oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 11, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Jeffry Kelber, Peter Dowben
  • Patent number: 9564579
    Abstract: A Tunnel Magnetic Junction of high magnetoresistance is prepared at temperatures and pressure consistent with Si CMOS fabrication and operation. A first metal layer of cobalt or nickel is grown on an interconnect or conductive array line of e.g., copper. The metal layer is formed by electron beam irradiation. Annealing at UHV at temperatures below 700K yields a carbon segregation that forms a few layer thick (average density 3.5 ML) graphene film on the metal layer. Formation of a second layer of metal on top of the graphene barrier layer yields a high performance MTJ.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 7, 2017
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventors: Jeffry Kelber, Mi Zhou
  • Patent number: 9331198
    Abstract: We have demonstrated controlled growth of epitaxial h-BN on a metal substrate using atomic layer deposition. This permits the fabrication of devices such as vertical graphene transistors, where the electron tunneling barrier, and resulting characteristics such as ON-OFF rate may be altered by varying the number of epitaxial layers of h-BN. Few layer graphene is grown on the h-BN opposite the metal substrate, with leads to provide a vertical graphene transistor that is intergratable with Si CMOS technology of today, and can be prepared in a scalable, low temperature process of high repeatability and reliability.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: May 3, 2016
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventor: Jeffry Kelber
  • Patent number: 9324938
    Abstract: Boron carbide polymers prepared from orthocarborane icosahedra cross-linked with a moiety A wherein A is selected from the group consisting of benzene, pyridine. 1,4-diaminobenzene and mixtures thereof give positive magnetoresistance effects of 30%-80% at room temperature. The novel polymers may be doped with transitional metals to improve electronic and spin performance. These polymers may be deposited by any of a variety of techniques, and may be used in a wide variety of devices including magnetic tunnel junctions, spin-memristors and non-local spin valves.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 26, 2016
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventors: Jeffry Kelber, Peter Dowben
  • Patent number: 9324960
    Abstract: Novel semiconducting polymers have been formed via the electron-induced cross-linking of orthocarborane B10C2H2 and 1,4-diaminobenzene. The films were formed by co-condensation of the molecular precursors and 200 eV electron-induced cross-linking under ultra-high vacuum (UHV) conditions. Ultraviolet photoemission spectra show that the compound films display a shift of the valence band maximum from ˜4.3 eV below the Fermi level for pure boron carbide to ?1.7 eV below the Fermi level when diaminobenzene is added. The surface photovoltage effect decreases with decreasing B/N atomic ratio. A neutron detector comprises the polymer as the p-type semiconductor to be paired with an n-type semiconductor.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 26, 2016
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Peter Dowben, Jeffry Kelber
  • Publication number: 20160093746
    Abstract: A voltage switchable coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A chrome oxide layer is formed on the cobalt by MBE at room at UHV at room temperature. There was thin cobalt oxide interface between the chrome oxide and the cobalt. Other magnetic materials may be employed. A few ML field of graphene is deposited on the chrome oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Application
    Filed: April 3, 2015
    Publication date: March 31, 2016
    Applicant: QUANTUM DEVICES, LLC
    Inventors: Jeffry KELBER, Peter DOWBEN
  • Patent number: 9202899
    Abstract: A voltage switchable non-local spin-FET is disclosed which provides a layer of chromia over a ferromagnetic substrate, such as cobalt. A film of graphene overlays the chromia, with a protective layer of metal oxide like cobalt oxide or iron oxide there between to prevent catalytic degradation of the graphene, which may occur. The graphene is provided with a contact, or source and drain, depending on the application. The spin-FET, which exhibits magnetic remanence, may be provided with a top gate of, e.g., cobalt or other ferromagnet such as iron. As an alternative to the ferromagnetic substrate, the device may be formed on a silicon or gallium arsenide base, or directly on a metal interconnect of an integrated circuit.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: December 1, 2015
    Assignee: Quantum Devices, LLC
    Inventor: Jeffry Kelber
  • Publication number: 20150214156
    Abstract: Manufacturable spin and spin-polaron interconnects are disclosed that do not exhibit the same increase in resistivity shown by Cu interconnects associated with decreasing linewidth. These interconnects rely on the transmission of spin as opposed to charge. Two types of graphene based interconnect approaches are explored, one involving the injection and diffusive transport of discrete spin-polarized carriers, and the other involving coherent spin polarization of graphene charge carriers due to exchange interactions with localized substrate spins. Such devices are manufacturable as well as scalable (methods for their fabrication exist, and the interconnects are based on direct growth, rather than physical transfer or metal catalyst formation). Performance at or above 300 K, as opposed to cryogenic temperatures, is the performance criteria.
    Type: Application
    Filed: January 27, 2015
    Publication date: July 30, 2015
    Inventor: Jeffry KELBER
  • Publication number: 20150200283
    Abstract: A voltage switchable non-local spin-FET is disclosed which provides a layer of chromia over a ferromagnetic substrate, such as cobalt. A film of graphene overlays the chromia, with a protective layer of metal oxide like cobalt oxide or iron oxide there between to prevent catalytic degradation of the graphene, which may occur. The graphene is provided with a contact, or source and drain, depending on the application. The spin-FET, which exhibits magnetic remanence, may be provided with a top gate of, e.g., cobalt or other ferromagnet such as iron. As an alternative to the ferromagnetic substrate, the device may be formed on a silicon or gallium arsenide base, or directly on a metal interconnect of an integrated circuit.
    Type: Application
    Filed: March 25, 2015
    Publication date: July 16, 2015
    Applicant: QUANTUM DEVICES, LLC
    Inventor: Jeffry KELBER
  • Publication number: 20150144882
    Abstract: We have demonstrated controlled growth of epitaxial h-BN on a metal substrate using atomic layer deposition. This permits the fabrication of devices such as vertical graphene transistors, where the electron tunneling barrier, and resulting characteristics such as ON-OFF rate may be altered by varying the number of epitaxial layers of h-BN. Few layer graphene is grown on the h-BN opposite the metal substrate, with leads to provide a vertical graphene transistor that is intergratable with Si CMOS technology of today, and can be prepared in a scalable, low temperature process of high repeatability and reliability.
    Type: Application
    Filed: July 5, 2013
    Publication date: May 28, 2015
    Inventor: Jeffry Kelber
  • Publication number: 20140217375
    Abstract: Novel semiconducting polymers have been formed via the electron-induced cross-linking of orthocarborane B10C2H2 and 1,4-diaminobenzene. The films were formed by co-condensation of the molecular precursors and 200 eV electron-induced cross-linking under ultra-high vacuum (UHV) conditions. Ultraviolet photoemission spectra show that the compound films display a shift of the valence band maximum from ˜4.3 eV below the Fermi level for pure boron carbide to ?1.7 eV below the Fermi level when diaminobenzene is added. The surface photovoltage effect decreases with decreasing B/N atomic ratio. A neutron detector comprises the polymer as the p-type semiconductor to be paired with an n-type semiconductor.
    Type: Application
    Filed: June 4, 2012
    Publication date: August 7, 2014
    Applicant: QUANTUM DEVICES, LLC
    Inventors: Peter Dowben, Jeffry Kelber
  • Publication number: 20140212671
    Abstract: Growth of single- and few-layer macroscopically continuous graphene films on Co3O4(111) by molecular beam epitaxy (MBE) has been characterized using low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS). MBE of Co on sapphire(0001) at 750 K followed by annealing in UHV (1000 K) results in ˜3 monolayers (ML) of Co3O4(111) due to O segregation from the bulk. Subsequent MBE of C at 1000 K from a graphite source yields a graphene LEED pattern incommensurate with that of the oxide, indicating graphene electronically decoupled from the oxide, as well as a sp2 C(KVV) Auger lineshape, and ???* C(1s) XPS satellite. The data strongly suggest the ability to grow graphene on other structurally similar magnetic/magnetoelecric oxides, such as Cr2O3(111)/Si for spintronic applications.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 31, 2014
    Inventor: Jeffry Kelber
  • Patent number: 8748957
    Abstract: A coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A magnetic oxide layer is formed on the cobalt by annealing at temperatures on the order of 1000° K to provide a few monolayer thick layer. Where the gate is cobalt, the resulting magnetic oxide is Co3O4(111). Other magnetic materials and oxides may be employed. A few ML field of graphene is deposited on the cobalt (III) oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Quantum Devices, LLC
    Inventors: Jeffry Kelber, Peter Dowben
  • Publication number: 20140151826
    Abstract: A Tunnel Magnetic Junction of high magnetoresistance is prepared at temperatures and pressure consistent with Si CMOS fabrication and operation. A first metal layer of cobalt or nickel is grown on an interconnect or conductive array line of e.g., copper. The metal layer is formed by electron beam irradiation. Annealing at UHV at temperatures below 700K yields a carbon segregation that forms a few layer thick (average density 3.5 ML) graphene film on the metal layer. Formation of a second layer of metal on top of the graphene barrier layer yields a high performance MTJ.
    Type: Application
    Filed: May 25, 2012
    Publication date: June 5, 2014
    Applicant: UNIVERSITY OF NORTH TEXSAS
    Inventors: Jeffry Kelber, Mi Zhou
  • Publication number: 20130248824
    Abstract: Graphene FETs exhibit low power consumption and high switching rates taking advantage of the excellent mobility in graphene deposited on a rocksalt oxide (111) by chemical vapor deposition, plasma vapor deposition or molecular beam epitaxy. A source, drain and electrical contacts are formed on the graphene layer. These devices exhibit band gap phenomena on the order of greater than about 0.5 eV, easily high enough to serve as high speed low power logic devices. Integration of this construction technology, based on the successful deposition of few layer graphene on the rocksalt oxide (111) with SI CMOS is straightforward.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Applicant: QUANTUM DEVICES, LLC
    Inventor: Jeffry Kelber
  • Patent number: 8158200
    Abstract: Disclosed is a substrate-mediated assembly for graphene structures. According to an embodiment, long-range ordered, multilayer BN(111) films can be formed by repeated atomic layer deposition (ALD) of a boron-halide or organoborane precursor and NH3 onto a substrate followed by a high temperature anneal. Graphene can then be formed on an ordered BN(111) film by depositing carbon on the ordered surface of the BN(111) film.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: April 17, 2012
    Assignee: University of North Texas
    Inventor: Jeffry Kelber