Patents by Inventor Jei-Won Yeon

Jei-Won Yeon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100140088
    Abstract: Disclosed herein is a reference electrode having a self-calibration function, which is used in electrochemical measurement and whose measurement accuracy can be maintained for a long period of time. Also disclosed is an apparatus for automatically correcting electrochemical potential using the reference electrode. The apparatus comprises: a reference electrode, comprising an external electrode body having an electrolyte membrane at one end thereof and an electrolyte solution filled therein, and at least two electrically isolated internal electrodes which are disposed in the external electrode body in such a manner that they are immersed in the electrolyte solution; and a reference potential calibrator for applying AC voltage to the internal electrodes to measure the electrical conductivity of the electrolyte solution of the electrolyte solution and output a correction signal about the change in the reference potential of the reference electrode.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventors: Jei-Won YEON, In-Kyu Choi, Won-Ho Kim, Kyuseok Song
  • Patent number: 7679743
    Abstract: The present invention relates to an apparatus and method for measuring the size of nanoparticles present in an aqueous solution as an infinitesimal quantity, and, more particularly, to a scheme that remotely measures the laser-induced breakdown of a fine nanoparticle using a probe beam in a non-contact manner, performs curve fitting on the symmetrical frequency distribution curve of the measured magnitude of a probe beam signal to form the shape of a Gaussian function, obtains calibration curves for the size of the nanoparticle from the peak and full-width at half-maximum thereof, and determines the size of an unknown nanoparticle from the calibration curves.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Euo Chang Jung, Hye-Ryun Cho, Kyoung Kyun Park, Jei-Won Yeon, Kyuseok Song
  • Publication number: 20090288949
    Abstract: Disclosed herein is a reference electrode including an electrolyte containing an optically-active material, including: an electrode body provided at an end thereof with an electrolyte separation membrane and charged therein with an optically-active material and an electrolyte solution; an inner electrode disposed in the electrode body to be immersed in the electrolyte solution; and an absorbance measurement probe for transmitting light to the electrolyte solution and collecting reflected light waves, which is disposed in the electrode body to be immersed in the electrolyte solution. Since the concentration of an electrode reaction material, such as Cl?, in the electrolyte is calculated using the absorbance of the electrolyte solution containing the optically-active material, the change in potential of the reference electrode can be properly corrected even when the reference electrode is exposed to a test environment for a long period of time and thus the concentration of the electrolyte changes.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 26, 2009
    Applicants: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jei-Won Yeon, In-Kyu Choi, Won-Ho Kim, Kyuseok Song
  • Patent number: 7390392
    Abstract: Disclosed is a method of in-situ monitoring a reduction process of uranium oxides by lithium metal, wherein a conversion yield of uranium metal from uranium oxides upon production of uranium metal through a reaction of uranium oxides (UOx, x?3) with lithium metal in the presence of a high-temperature molten salt is measured according to an electrochemical analysis based on an oxidation of an oxygen ion and a reduction of a lithium ion dissociated from lithium oxide obtained as a by-product of the reaction, by use of a measuring device composed of a potentiostat/galvanostat and a reactor provided with an anode and a cathode. The in-situ monitoring method of the current invention is advantageous in terms of fast and simplified measuring techniques, by directly measuring the reduction process of uranium oxides at the anode and cathode connected to the potentiostat/galvanostat in the presence of the high-temperature molten salt.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: June 24, 2008
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: In-Kyu Choi, Young-Hwan Cho, Jei-Won Yeon, Won-ho Kim, Taek-Jin Kim