Patents by Inventor Jelena Culic-Viskota

Jelena Culic-Viskota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10921349
    Abstract: Embodiments of the invention include a current sensing device for sensing current in an organic substrate. The current sensing device includes a released base structure that is positioned in proximity to a cavity of the organic substrate and a piezoelectric film stack that is positioned in proximity to the released base structure. The piezoelectric film stack includes a piezoelectric material in contact with first and second electrodes. A magnetic field is applied to the current sensing device and this causes movement of the released base structure and the piezoelectric stack which induces a voltage (potential difference) between the first and second electrodes.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 16, 2021
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Jelena Culic-Viskota, Thomas L. Sounart, Feras Eid, Sasha N. Oster
  • Publication number: 20190113545
    Abstract: Embodiments of the invention include a current sensing device for sensing current in an organic substrate. The current sensing device includes a released base structure that is positioned in proximity to a cavity of the organic substrate and a piezoelectric film stack that is positioned in proximity to the released base structure. The piezoelectric film stack includes a piezoelectric material in contact with first and second electrodes. A magnetic field is applied to the current sensing device and this causes movement of the released base structure and the piezoelectric stack which induces a voltage (potential difference) between the first and second electrodes.
    Type: Application
    Filed: July 1, 2016
    Publication date: April 18, 2019
    Inventors: Georgios C. DOGIAMIS, Adel A. ELSHERBINI, Shawna M. LIFF, Johanna M. SWAN, Jelena CULIC-VISKOTA, Thomas L. SOUNART, Feras EID, Sasha N. OSTER
  • Patent number: 10261121
    Abstract: Embodiments of the present disclosure describe semiconductor equipment devices having a metal workpiece and a diamond-like carbon (DLC) coating disposed on a surface of the metal workpiece, thermal semiconductor test pedestals having a metal plate and a DLC coating disposed on a surface of the metal plate, techniques for fabricating thermal semiconductor test pedestals with DLC coatings, and associated configurations. A thermal semiconductor test pedestal may include a metal plate and a DLC coating disposed on a surface of the metal plate. The metal plate may include a metal block formed of a first metal and a metal coating layer formed of a second metal between the metal block and the DLC coating. An adhesion strength promoter layer may be disposed between the metal coating layer and the DLC coating. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: April 16, 2019
    Assignee: Intel Corporation
    Inventors: Jelena Culic-Viskota, Nader N. Abazarnia
  • Publication number: 20180323130
    Abstract: An adhesive polymer thermal interface material is described with sintered fillers for thermal conductivity in micro-electronic packaging. Embodiments include a polymer thermal interface material (PTIM) with sinterable thermally conductive filler particles, a dispersant, and a silicone polymer matrix.
    Type: Application
    Filed: December 22, 2015
    Publication date: November 8, 2018
    Inventors: Boxi LIU, Syadwad JAIN, Jelena CULIC-VISKOTA, Nachiket R. RARAVIKAR, James C. MATAYABAS, Jr.
  • Publication number: 20170343599
    Abstract: Embodiments of the present disclosure describe semiconductor equipment devices having a metal workpiece and a diamond-like carbon (DLC) coating disposed on a surface of the metal workpiece, thermal semiconductor test pedestals having a metal plate and a DLC coating disposed on a surface of the metal plate, techniques for fabricating thermal semiconductor test pedestals with DLC coatings, and associated configurations. A thermal semiconductor test pedestal may include a metal plate and a DLC coating disposed on a surface of the metal plate. The metal plate may include a metal block formed of a first metal and a metal coating layer formed of a second metal between the metal block and the DLC coating. An adhesion strength promoter layer may be disposed between the metal coating layer and the DLC coating. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: May 26, 2016
    Publication date: November 30, 2017
    Inventors: Jelena Culic-Viskota, Nader N. Abazarnia
  • Patent number: 9352055
    Abstract: Functionalized second harmonic nanoprobes for imaging samples and a method of using such probes to monitor the dynamics different processes using a variety of imaging techniques are provided. The functionalized second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystalline materials that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy, and are provided with functional surface modifications that allow for targeted imaging of a variety of biological and non-biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: May 31, 2016
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Jelena Culic-Viskota, William P. Dempsey, Scott E. Fraser
  • Publication number: 20160051705
    Abstract: Functionalized second harmonic nanoprobes for imaging samples and a method of using such probes to monitor the dynamics different processes using a variety of imaging techniques are provided. The functionalized second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystalline materials that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy, and are provided with functional surface modifications that allow for targeted imaging of a variety of biological and non-biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Application
    Filed: September 10, 2015
    Publication date: February 25, 2016
    Inventors: Periklis Pantazis, Jelena Culic-Viskota, Wiliam P. Dempsey, Scott E. Fraser
  • Patent number: 9221919
    Abstract: Functionalized second harmonic nanoprobes for imaging samples and a method of using such probes to monitor the dynamics different processeses using a variety of imaging techniques are provided. The functionalized second harmonic generating (SHG) nanoprobes are comprised of various kinds of nanocrystalline materials that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy, and are provided with functional surface modifications that allow for targeted imaging of a variety of biological and non-biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: December 29, 2015
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Jelena Culic-Viskota, William P. Dempsey, Scott E. Fraser