Patents by Inventor Jen C. Lin

Jen C. Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10435774
    Abstract: The present application discloses wrought 2xxx Al—Li alloy products that are work insensitive. The wrought aluminum alloy products generally include from about 2.75 wt. % to about 5.0 wt. % Cu, from about 0.2 wt. % to about 0.8 wt. % Mg, where the ratio of copper-to-magnesium ratio (Cu/Mg) in the aluminum alloy is in the range of from about 6.1 to about 17, from about 0.1 wt. % to 1.10 wt. % Li, from about 0.3 wt. % to about 2.0 wt. % Ag, from 0.50 wt. % to about 1.5 wt. % Zn, up to about 1.0 wt. % Mn, the balance being aluminum, optional incidental elements, and impurities. The wrought aluminum alloy products may realize a low strength differential and in a short aging time due to their work insensitive nature.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 8, 2019
    Assignee: ARCONIC INC.
    Inventors: Cagatay Yanar, Roberto J. Rioja, Jen C. Lin, Ralph R. Sawtell
  • Patent number: 10227679
    Abstract: New aluminum casting alloys having 8.5-9.5 wt. % silicon, 0.8-2.0 wt. % copper (Cu), 0.20-0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 12, 2019
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Jen C. Lin
  • Patent number: 10174409
    Abstract: An aluminum casting alloy has 8.5-9.5 wt. % silicon, 0.5-2.0 wt. % copper (Cu), 0.27-0.53 wt. % magnesium (Mg), wherein the aluminum casting alloy includes copper and magnesium such that 4.7?(Cu+10Mg)?5.8, and other elements, the balance being aluminum. Selected elements may be added to the base composition to give resistance to degradation of tensile properties due to exposure to heat. The thermal treatment of the alloy is calculated based upon wt. % composition to solutionize unwanted phases having a negative impact on properties and may include a three level ramp-up and soak to a final temperature followed by cold water quenching and artificial aging.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 8, 2019
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Jen C. Lin
  • Patent number: 10119183
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: November 6, 2018
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Publication number: 20180171438
    Abstract: New 3xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 6.5 to 11.0 wt. % Si, from 0.20 to 0.80 wt. % Mg, from 0.05 to 0.50 wt. % Cu, from 0.10 to 0.80 wt. % Mn, from 0.005 to 0.05 wt. % Sr, up to 0.25 wt. % Ti, up to 0.30 wt. % Fe, and up to 0.20 wt. % Zn, the balance being aluminum and impurities.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Inventors: Xinyan Yan, Jen C. Lin
  • Patent number: 9926620
    Abstract: New 2xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 2xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 2xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 27, 2018
    Assignee: Arconic Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Patent number: 9890443
    Abstract: New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 13, 2018
    Assignee: Arconic Inc.
    Inventors: Jen C. Lin, Anton J. Rovito, Timothy P. Doyle, Shawn P. Sullivan, Gabriele F. Ciccola, Christopher J. Tan
  • Publication number: 20170326690
    Abstract: The present disclosure relates to new metal powders, wires and other physical forms for use in additive manufacturing, welding and cladding, and multi-component alloy products made from such metal powders, wires and forms via additive manufacturing, welding and cladding. The composition(s) and/or physical properties of the metal powders, wires or forms may be tailored. In turn, additive manufacturing, welding and cladding may be used to produce a tailored multi-component alloy product.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 16, 2017
    Inventors: David W. Heard, Gen Satoh, Cagatay Yanar, Vivek M. Sample, Jen C. Lin, Andreas Kulovits, Raymond J. Kilmer, Sherri McCleary, Donald J. Spinella, Kyle L. Williams
  • Publication number: 20170306448
    Abstract: New alpha-beta titanium alloys are disclosed. The new alloys generally include 7.0-11.0 wt. % Al, and 1.0-4.0 wt. % Mo, wherein Al:Mo, by weight, is from 2.0:1-11.0:1, the balance being titanium, any optional incidental elements, and unavoidable impurities. The new alloys may realize an improved combination of properties as compared to conventional titanium alloys.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Jen C. Lin, Xinyan Yan, Joseph C. Sabol, David W. Heard, Faramarz MH Zarandi, Severine Cambier, Fusheng Sun, Ernest M. Crist, JR., Sesh A. Tamirisakandala
  • Publication number: 20170306450
    Abstract: New beta-style (bcc) titanium alloys are disclosed. The new alloys generally include 4-8 wt. % Al, 4-8 wt. % Nb, 4-8 wt. % V, 1-5 wt. % Mo, optionally 2-6 wt. % Cr, the balance being titanium, optional incidental elements, and unavoidable impurities. The new alloys may realize an improved combination of properties as compared to conventional titanium alloys.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Jen C. Lin, Xinyan Yan, Joseph C. Sabol, David W. Heard, Faramarz MH Zarandi, Severine Cambier, Fusheng Sun, Ernest M. Crist, JR., Sesh A. Tamirisakandala
  • Publication number: 20170306449
    Abstract: New beta-style (bcc) titanium alloys are disclosed. The new alloys generally include 2.0-6.0 wt. % Al, 4.0-12.0 wt. % V, and 1.0-5.0 wt. % Fe, the balance being titanium, any optional incidental elements, and unavoidable impurities. The new alloys may realize an improved combination of properties as compared to conventional titanium alloys.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 26, 2017
    Inventors: Jen C. Lin, Xinyan Yan, Joseph C. Sabol, David W. Heard, Faramarz MH Zarandi, Severine Cambier, Fusheng Sun, Ernest M. Crist, JR., Sesh A. Tamirisakandala
  • Publication number: 20170292174
    Abstract: New aluminum alloys having iron, vanadium, silicon, and copper, and with a high volume of ceramic phase therein are disclosed. The new products may include from 3 to 12 wt. % Fe, from 0.1 to 3 wt. % V, from 0.1 to 3 wt. % Si, from 1.0 to 6 wt. % Cu, from 1 to 30 vol. % ceramic phase, the balance being aluminum and impurities. The ceramic phase may be homogenously distributed within the alloy matrix.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 12, 2017
    Inventors: Lynette M. Karabin, Cagatay Yanar, David W. Heard, Jen C. Lin, Wei Wang
  • Publication number: 20170137920
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Publication number: 20170120386
    Abstract: The present disclosure relates to aluminum-based products having 1-30 vol. % of a ceramic phase. The aluminum alloy products may be produced via additive manufacturing techniques to facilitate production of the aluminum-based products having the 1-30 vol. % of the ceramic phase.
    Type: Application
    Filed: December 1, 2016
    Publication date: May 4, 2017
    Inventors: Jen C. Lin, Lynnette M. Karabin, Cagatay Yanar, David W. Heard
  • Publication number: 20170121795
    Abstract: New wrought 7xxx aluminum alloys are disclosed. The new wrought 7xxx aluminum alloys generally include from 3.75 to 8.0 wt. % Zn, from 1.25 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.35 wt. % Cu, from 0.04 to 0.20 wt. % V, from 0.06 to 0.20 wt. % Zr, where V+Zr?0.23 wt. %, from 0.01 to 0.25 wt. % Ti, up to 0.50 wt. % Mn, up to 0.40 wt. % Cr, up to 0.35 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and impurities, wherein the wrought 7xxx aluminum alloy include not greater than 0.10 wt. % each of any one impurity, and wherein the wrought 7xxx aluminum alloy includes not greater than 0.35 wt. % in total of the impurities.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: Xinyan Yan, James Daniel Bryant, Jen C. Lin, Wenping Zhang, Eider Simielli
  • Publication number: 20170120393
    Abstract: The present disclosure relates to aluminum-based products having 1-30 vol. % of a ceramic phase. The aluminum alloy products may be produced via additive manufacturing techniques to facilitate production of the aluminum-based products having the 1-30 vol. % of the ceramic phase.
    Type: Application
    Filed: December 1, 2016
    Publication date: May 4, 2017
    Inventors: Jen C. Lin, Lynnette M. Karabin, Cagatay Yanar, David W. Heard, Gen Satoh
  • Publication number: 20170088920
    Abstract: Improved wrought 7xxx aluminum alloy products are disclosed. The improved wrought 7xxx aluminum alloy products generally include 6.0-10.0 wt. % Zn, 1.4-2.2 wt. % Mg, 1.3-2.5 wt. % Cu and 0.080-0.250 wt. % Cr. The improved wrought 7xxx aluminum alloy products generally have a thickness of from 3.0 inches to 12 inches, and realize an improved combination of properties, such an improved combination of crack deviation resistance, strength, fracture toughness and corrosion resistance.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Julien Boselli, Jen C. Lin, Mark A. James, Gary H. Bray, John R. Brockenbrough
  • Patent number: 9587298
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: March 9, 2013
    Date of Patent: March 7, 2017
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Patent number: 9556502
    Abstract: New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: January 31, 2017
    Assignee: Arconic Inc.
    Inventors: Jen C. Lin, Anton J. Rovito, Timothy P. Doyle, Shawn P. Sullivan, Gabriele F. Ciccola, Christopher J. Tan
  • Publication number: 20170016092
    Abstract: New aluminum casting alloys having 8.5-9.5 wt. % silicon, 0.8-2.0 wt. % copper (Cu), 0.20-0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting.
    Type: Application
    Filed: December 18, 2014
    Publication date: January 19, 2017
    Inventors: Xinyan Yan, Jen C. Lin