Patents by Inventor Jen Chun Wang

Jen Chun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955154
    Abstract: A sense amplifier circuit includes a sense amplifier, a switch and a temperature compensation circuit. The temperature compensation circuit provides a control signal having a positive temperature coefficient, based on which the switch provides reference impedance for temperature compensation. The sense amplifier includes a first input end coupled to a target bit and a second input end coupled to the switch. The sense amplifier outputs a sense amplifier signal based on the reference impedance and the impedance of the target bit.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Tung Huang, Jen-Yu Wang, Po-Chun Yang, Yi-Ting Wu, Yung-Ching Hsieh, Jian-Jhong Chen, Chia-Wei Lee
  • Publication number: 20240107414
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for switching a secondary cell to a primary cell. A user equipment (UE) monitors a first radio condition of the UE for beams of a primary cell and a second radio condition for beams of one or more secondary cells configured for the UE in carrier aggregation. The UE transmits a request to configure a candidate beam of at least one candidate secondary cell as a new primary cell in response to the first radio condition not satisfying a first threshold and the second radio condition for the at least one candidate secondary cell satisfying a second threshold. A base station determines to reconfigure at least one secondary cell as the new primary cell. The base station and the UE perform a handover of the UE to the new primary cell.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Inventors: Yu-Chieh HUANG, Kuhn-Chang LIN, Jen-Chun CHANG, Wen-Hsin HSIA, Chia-Jou LU, Sheng-Chih WANG, Chenghsin LIN, Yeong Leong CHOO, Chun-Hsiang CHIU, Chihhung HSIEH, Kai-Chun CHENG, Chung Wei LIN
  • Patent number: 11942130
    Abstract: A bottom-pinned spin-orbit torque magnetic random access memory (SOT-MRAM) is provided in the present invention, including a substrate, a bottom electrode layer on the substrate, a magnetic tunnel junction (MTJ) on the bottom electrode layer, a spin-orbit torque (SOT) layer on the MTJ, a capping layer on the SOT layer, and an injection layer on the capping layer, wherein the injection layer is divided into individual first part and second part, and the first part and the second part are connected respectively with two ends of the capping layer.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: March 26, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jian-Jhong Chen, Yi-Ting Wu, Jen-Yu Wang, Cheng-Tung Huang, Po-Chun Yang, Yung-Ching Hsieh
  • Publication number: 20240096784
    Abstract: Some embodiments of the present disclosure relate to an integrated chip including an extended via that spans a combined height of a wire and a via and that has a smaller footprint than the wire. The extended via may replace a wire and an adjoining via at locations where the sizing and the spacing of the wire are reaching lower limits. Because the extended via has a smaller footprint than the wire, replacing the wire and the adjoining via with the extended via relaxes spacing and allows the size of the pixel to be further reduced. The extended via finds application for capacitor arrays used for pixel circuits.
    Type: Application
    Filed: January 3, 2023
    Publication date: March 21, 2024
    Inventors: Meng-Hsien Lin, Hsing-Chih Lin, Ming-Tsong Wang, Min-Feng Kao, Kuan-Hua Lin, Jen-Cheng Liu, Dun-Nian Yaung, Ko Chun Liu
  • Publication number: 20240093357
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 11851749
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220290291
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 11345991
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 11107220
    Abstract: An image processing method includes the following steps: receiving a two-dimensional image and segmenting an object block in the two-dimensional image, masking the object block with a color block to generate a mask image; inputting the two-dimensional image and the mask image into a first image processing model, outputting a feature vector from the first image processing model; and inputting the two-dimensional image into a second image processing model to obtain a feature map. The feature map comprises a plurality of feature channel maps, and the feature vector contains a plurality of feature values. Each of the feature channel maps corresponds to one of the feature values in sequence. A weighted feature map is generated according to the feature channel maps and the feature values.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: August 31, 2021
    Assignee: HTC CORPORATION
    Inventors: Jen-Chun Wang, Chun-Li Wang, Tung-Ting Yang
  • Publication number: 20210183065
    Abstract: An image processing method includes the following steps: receiving a two-dimensional image and segmenting an object block in the two-dimensional image, masking the object block with a color block to generate a mask image; inputting the two-dimensional image and the mask image into a first image processing model, outputting a feature vector from the first image processing model; and inputting the two-dimensional image into a second image processing model to obtain a feature map. The feature map comprises a plurality of feature channel maps, and the feature vector contains a plurality of feature values. Each of the feature channel maps corresponds to one of the feature values in sequence. A weighted feature map is generated according to the feature channel maps and the feature values.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Applicant: HTC Corporation
    Inventors: Jen-Chun WANG, Chun-Li WANG, Tung-Ting YANG
  • Publication number: 20200102645
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Application
    Filed: July 12, 2019
    Publication date: April 2, 2020
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 8941098
    Abstract: A light detecting array structure and a light detecting module are provided. The light detecting array structure includes a plurality of first electrodes, a plurality of second electrodes, a first carrier selective layer, a second carrier selective layer, and a light-absorbing active layer. The second electrodes are disposed on one side of the first electrodes. Between the first electrodes and the second electrodes, a first carrier selective layer, a light-absorbing active layer and a second carrier selective layer are disposed. The light detecting module includes the light detecting array structure and a control unit. The control unit is coupled to the first electrodes and second electrodes, selectively provides at least two cross voltages between each of the first electrodes and each of the second electrodes, and reads photocurrents flowing through the first electrodes and second electrodes.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 27, 2015
    Assignees: Industrial Technology Research Institute, National Tsing Hua University
    Inventors: Yan-Rung Lin, Chang-Ho Liou, Sheng-Fu Horng, Jen-Chun Wang, Yun-Ru Hong, Ming-Kun Lee, Hsin-Fei Meng
  • Publication number: 20130168643
    Abstract: A light detecting array structure and a light detecting module are provided. The light detecting array structure includes a plurality of first electrodes, a plurality of second electrodes, a first carrier selective layer, a second carrier selective layer, and a light-absorbing active layer. The second electrodes are disposed on one side of the first electrodes. Between the first electrodes and the second electrodes, a first carrier selective layer, a light-absorbing active layer and a second carrier selective layer are disposed. The light detecting module includes the light detecting array structure and a control unit. The control unit is coupled to the first electrodes and second electrodes, selectively provides at least two cross voltages between each of the first electrodes and each of the second electrodes, and reads photocurrents flowing through the first electrodes and second electrodes.
    Type: Application
    Filed: May 17, 2012
    Publication date: July 4, 2013
    Applicants: NATIONAL TSING HUA UNIVERSITY, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yan-Rung Lin, Chang-Ho Liou, Sheng-Fu Horng, Jen-Chun Wang, Yun-Ru Hong, Ming-Kun Lee, Hsin-Fei Meng
  • Publication number: 20130075136
    Abstract: A resin composition comprises (A) 100 parts by weight of cyanate ester resin; (B) 5 to 25 parts by weight of nitrogen and oxygen containing heterocyclic compound; (C) 5 to 75 parts by weight of polyphenylene oxide resin; and (D) 5 to 100 parts by weight of oligomer of phenylmethane maleimide. By using specific components at specific proportions, the resin composition of the invention offers the features of low dielectric constant and low dissipation factor and can be made into prepreg that may be used in printed circuit board.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Inventors: Li-Chih YU, Tse-An LEE, Jen-Chun WANG, Yu-Te LIN, Yih-Rern PENG
  • Patent number: 8404764
    Abstract: A resin composition comprises (A) 100 parts by weight of cyanate ester resin; (B) 5 to 25 parts by weight of nitrogen and oxygen containing heterocyclic compound; (C) 5 to 75 parts by weight of polyphenylene oxide resin; and (D) 5 to 100 parts by weight of oligomer of phenylmethane maleimide. By using specific components at specific proportions, the resin composition of the invention offers the features of low dielectric constant and low dissipation factor and can be made into prepreg that may be used in printed circuit board.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 26, 2013
    Assignee: Elite Material Co., Ltd.
    Inventors: Li-Chih Yu, Tse-An Lee, Jen-Chun Wang, Yu-Te Lin, Yih-Rern Peng
  • Publication number: 20130056070
    Abstract: Disclosed is an apparatus and method for generating inverted organic solar cells and which required no electron selective layer, were fabricated and their power conversion efficiency was found to improve irreversibly with post-processing light soaking for a period. X-Ray photoelectron spectroscopy characterization further revealed segregation in surface composition at the interface and was found to explain the current density-voltage measurements. In addition, the light soaked devices were found to exhibit an extended lifetime as compared to conventional devices. Since no electron selective layer was required, light soaking may be considered as a cost-effective method to achieve efficient inverted organic solar cells.
    Type: Application
    Filed: December 22, 2011
    Publication date: March 7, 2013
    Inventors: Sheng-Fu Horng, Jen-Chun Wang, Cheng-Yueh Lu, Jui-Lin Hsu, Ming-Kun Lee, Yun-Ru Hong, Hsin-Fei Meng, Yuan-Lin Yang, Tsung-Te Chen
  • Publication number: 20130025667
    Abstract: The present invention provides an improved electrode structure for improving efficiency of solar cells, and the structure of the solar cells includes a back electrode, a transparent conducting glass layer, a photoelectric conversion layer, and a grid electrode. The transparent conducting glass layer includes a light-penetrated surface for accepting light. The photoelectric conversion layer is disposed between the back electrode and the transparent conducting glass layer to convert light energy into electric energy. The grid electrode is embedded in the transparent conducting glass layer to solve the problems of uneven electric potential for decreasing uneven voltage on the light-penetrated surface and further increasing efficiency of the solar cells.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 31, 2013
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Sheng-Fu Horng, Ming-Kun Lee, Jen-Chun Wang, Yun-Ru Horng, Hsin-Fei Meng
  • Publication number: 20130025666
    Abstract: The present invention provides a kind of structure of a thin film solar cell, including: a transparent conductive layer, a first electrode, a second electrode, a conductive layer of metal, and a photoelectric conversion layer, wherein changing the structures of said first electrode and said second electrode can improve the efficiency of the cell. Because the distribution of electric potential is not uniform in the transparent conductive layer, it will reduce the efficiency of the cell. We can solve this problem by changing the electrode structures of the cell, and improve the efficiency of the cell.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 31, 2013
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Sheng-Fu Horng, Ming-Kun Lee, Jen-Chun Wang, Yun-Ru Horng, Hsin-Fei Meng
  • Patent number: 8324012
    Abstract: A tandem solar cell and fabricating method thereof are disclosed. The steps of the fabricating method comprises: a top inverted solar cell having a plurality of inverted solar sub-cells is provided; a bottom normal solar cell having a plurality of normal solar sub-cells accompanying with the inverted solar sub-cells is provided; and processing fit process of the top inverted solar cell and the bottom normal solar cell is executed, wherein an interlayer is disposed between the bottom normal solar cell and the top inverted solar cell, and the interlayer includes a plurality of conductive dots. The plurality of inverted solar sub-cells and normal solar sub-cells are placed with an offset distance from each other, and a plurality of solar sub-cells are formed after the pressing fit process, and the plurality of solar sub-cells are series/parallel connection each other by electrically connecting the plurality of conductive dots.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 4, 2012
    Assignee: National Tsing Hua University
    Inventors: Sheng-Fu Horng, Hsin-Fe Meng, Ming-Kun Lee, Jen-Chun Wang, Tsung-Te Chen
  • Publication number: 20110320145
    Abstract: The present invention discloses a method for extracting of solar cell parameters. After illuminating the solar cell by different simulated solar luminosity with different illumination intensity, measured current and measured voltages of the solar cell are acquired and the series resistance of the solar cell is extracted based on the measured current and measured voltages. The root mean square error (RMSE) is used to determine the series resistance of the solar cell. Therefore, the parameters of the solar cell are extracted without presuming current-voltage functional form.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 29, 2011
    Inventors: Sheng-Fu Horng, Ming-Kun Lee, Jen-Chun Wang, Hsin-Fei Meng