Patents by Inventor Jen-Hau Cheng
Jen-Hau Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11353269Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: GrantFiled: November 11, 2019Date of Patent: June 7, 2022Assignee: Kelvin Thermal Technologies, Inc.Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Publication number: 20200191495Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: ApplicationFiled: November 11, 2019Publication date: June 18, 2020Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Patent number: 10571200Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: GrantFiled: February 17, 2017Date of Patent: February 25, 2020Assignee: KELVIN THERMAL TECHNOLOGIES, INC.Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Patent number: 10527358Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: GrantFiled: October 13, 2016Date of Patent: January 7, 2020Assignee: KELVIN THERMAL TECHNOLOGIES, INC.Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Patent number: 9909814Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: GrantFiled: September 22, 2015Date of Patent: March 6, 2018Assignee: KELVIN THERMAL TECHNOLOGIES, INC.Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Publication number: 20170299277Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: ApplicationFiled: February 17, 2017Publication date: October 19, 2017Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Patent number: 9651312Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: GrantFiled: April 8, 2015Date of Patent: May 16, 2017Assignee: KELVIN THERMAL TECHNOLOGIES, INC.Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen- Hau Cheng, George P. Peterson
-
Publication number: 20170030654Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: ApplicationFiled: October 13, 2016Publication date: February 2, 2017Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Publication number: 20160187070Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: ApplicationFiled: September 22, 2015Publication date: June 30, 2016Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Patent number: 9163883Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: GrantFiled: March 8, 2010Date of Patent: October 20, 2015Assignee: KEVLIN THERMAL TECHNOLOGIES, INC.Inventors: Ronggui Yang, Yung-Cheng Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen-Hau Cheng, George P. Peterson
-
Publication number: 20150226493Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: ApplicationFiled: April 8, 2015Publication date: August 13, 2015Inventors: Ronggui Yang, Y.C. Lee, Victor M. Bright, Chen Li, Christopher Oshman, Bo Shi, Jen- Hau Cheng, George P. Peterson
-
Publication number: 20140209288Abstract: A method and an apparatus are provided for cooling a heat source using a refrigerant flow in a heat exchanger. According to some embodiments, a flow property of the refrigerant as it flows through a heat exchanger is measured and based on the measurement a flow distribution rate for the flow of the refrigerant in the heat exchanger is determined. A valve is operated for adjusting the flow rate of the refrigerant in the heat exchanger according to the determined flow distribution rate.Type: ApplicationFiled: January 28, 2013Publication date: July 31, 2014Applicant: ALCATEL-LUCENT USA, INC.Inventors: Maria Elina Simon, Paul Robert Kolodner, Todd Richard Salamon, Jen-Hau Cheng, Krishna Murty Kota Venkata
-
Patent number: 8542489Abstract: An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.Type: GrantFiled: May 5, 2011Date of Patent: September 24, 2013Assignee: Alcatel LucentInventors: Susanne Arney, Jen-Hau Cheng, Paul R. Kolodner, Krishna-Murty Kota-Venkata, William Scofield, Todd R. Salamon, Maria E. Simon
-
Patent number: 8426720Abstract: The present invention discloses a micro thermoelectric device and manufacturing method thereof, and the manufacturing method comprises the steps of providing a substrate and depositing a barrier layer on the substrate, using the barrier layer as a mask to etch a pattern on the barrier layer to form a plurality of openings, adopting a reactive ion etching (RIE) method to remove the barrier layer and smoothing the curvature of the corner of each groove, depositing a metal conductive wire layer, coating an adhesive layer in said each groove by a surface mount technology (SMT), placing a plurality of thermoelectric materials individually into each groove, repeating steps (a) to (f) to produce another substrate, and connecting the two substrates into an aligned position.Type: GrantFiled: July 30, 2004Date of Patent: April 23, 2013Assignee: Industrial Technology Research InstituteInventors: Chun-Kai Liu, Jen-Hau Cheng
-
Publication number: 20120281359Abstract: An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.Type: ApplicationFiled: May 5, 2011Publication date: November 8, 2012Applicant: Alcatel-LucentInventors: Susanne Arney, Jen-Hau Cheng, Paul R. Kolodner, Krishna-Murty Kota-Venkata, William Scofield, Todd R. Salamon, Maria E. Simon
-
Publication number: 20120279683Abstract: An apparatus comprising a rack having one or more shelves, a plurality of electronics circuit boards and heat conduits and a cooler. Each board is held by one of the one or more shelves, some of the boards having a localized heat source thereon. Each heat conduit forms a heat conducting path over and adjacent to a particular one of the boards from a region adjacent to the heat source thereon to a connection zone, the zone being remote from the heat source. The cooler is located on a side of the rack and coupled to the zones such that heat is transferable from the paths to the cooler. The cooler is configured to flow a cooling fluid therein to cool localized thermal interfaces at the cooler, each interface being adjacent to and at a corresponding one of the zones.Type: ApplicationFiled: May 5, 2011Publication date: November 8, 2012Applicant: Alcatel-Lucent USA Inc.Inventors: Susanne Arney, Jen-Hau Cheng, John Daly, Domhnaill Hernon, Marc S. Hodes, Christian Joncourt, Paul R. Kolodner, Krishna-Murty Kota-Venkata, Alan Lyons, Todd R. Salamon, William Scofield, Maria E. Simon, Oliver Taheny
-
Publication number: 20110017431Abstract: Methods, apparatuses, and systems are disclosed for flexible thermal ground planes. A flexible thermal ground plane may include a support member. The flexible thermal ground plane may include an evaporator region or multiple evaporator regions configured to couple with the support member. The flexible thermal ground plane may include a condenser region or multiple condenser regions configured to couple with the support member. The evaporator and condenser region may include a microwicking structure. The evaporator and condenser region may include a nanowicking structure coupled with the micro-wicking structure, where the nanowicking structure includes nanorods. The evaporator and condenser region may include a nanomesh coupled with the nanorods and/or the microwicking structure. Some embodiments may include a micromesh coupled with the nanorods and/or the microwicking structure.Type: ApplicationFiled: March 8, 2010Publication date: January 27, 2011Applicant: Y.C. LeeInventors: Ronggui Yang, Y.C. Lee, Victor M. Bright, Chen Li, G.P. Bud Peterson, Christopher Oshman, Bo Shi, Jen-Hau Cheng
-
Patent number: 7550289Abstract: A method of fabricating an integral device of a biochip integrated with micro thermo-electric elements and the apparatus thereof is disclosed. The micro thermo-electric biochip includes a micro thermo-electric temperature control unit and a biochip unit, and both of the two units can be manufactured by using the fabricating method. In addition, the biochip unit can be attached to the bottom side of the micro thermo-electric temperature control unit, and it can also be integrated into the micro thermo-electric temperature control unit. Besides, the integral device includes disposable type and non-disposable type.Type: GrantFiled: August 29, 2005Date of Patent: June 23, 2009Assignee: Industrial Technology Research InstituteInventors: Jen-Hau Cheng, Chun-Kai Liu
-
Publication number: 20070012938Abstract: A light-emitting-diode packaging structure having thermoelectric device, which is applied to the LED unit packaged using the flip chip technology. This is realized by directly building the thermoelectric elements into the solder bump layer of the light-emitting-diode packaging structure to replace a part of the solder bumps, as such raising the heat dissipation efficiency of the light emitting diode unit, enhancing the stability and reliability of light emission of the LED unit, and reducing the difficulties and complexity of the integration of the LED package.Type: ApplicationFiled: October 24, 2005Publication date: January 18, 2007Inventors: Chih-Kuang Yu, Chun-Kai Liu, Ra-Min Tain, Jen-Hau Cheng
-
Publication number: 20060216815Abstract: A method of fabricating an integral device of a biochip integrated with micro thermoelectric elements and the apparatus thereof is disclosed. The micro thermo-electric biochip includes a micro thermoelectric temperature control unit and a biochip unit, and both of the two units can be manufactured by using the fabricating method. In addition, the biochip unit can be attached to the bottom side of the micro thermo-electric temperature control unit, and it can also be integrated into the micro thermoelectric temperature control unit. Besides, the integral device includes disposable type and non-disposable type.Type: ApplicationFiled: August 29, 2005Publication date: September 28, 2006Inventors: Jen-Hau Cheng, Chun-Kai Liu