Patents by Inventor Jeng-Jiing Sheu

Jeng-Jiing Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6514814
    Abstract: A preparation for forming a thin film capacitor includes forming an amorphous ferroelectric film, such as barium strontium titanate [(Ba,Sr)TiO3] film, for use as an interface between a metal electrode and a polycrystalline ferroelectric film, such as (Ba,Sr) TiO3 film. The polycrystalline ferroelectric film serves as a dielectric layer of the thin film capacitor in view of the fact that the polycrystalline ferroelectric film has a high dielectric constant. The amorphous ferroelectric film serves as a buffer layer for inhibiting the leakage current of the thin film capacitor. The amorphous ferroelectric film is grown by sputtering and by introducing a working gas, such as argon, and a reactive gas, such as oxygen, into a reaction chamber in which a plasma is generated at room temperature.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: February 4, 2003
    Assignee: Precision Instrument Development Center, National Science Council
    Inventors: Cheng-Chung Jaing, Jyh-Shin Chen, Jen-Inn Chyi, Jeng-Jiing Sheu
  • Publication number: 20010044164
    Abstract: A preparation for forming a thin film capacitor includes forming an amorphous ferroelectric film, such as barium strontium titanate [(Ba,Sr)TiO3] film, for use as an interface between a metal electrode and a polycrystalline ferroelectric film, such as (Ba,Sr) TiO3 film. The polycrystalline ferroelectric film serves as a dielectric layer of the thin film capacitor in view of the fact that the polycrystalline ferroelectric film has a high dielectric constant. The amorphous ferroelectric film serves as a buffer layer for inhibiting the leakage current of the thin film capacitor. The amorphous ferroelectric film is grown by sputtering and by introducing a working gas, such as argon, and a reactive gas, such as oxygen, into a reaction chamber in which a plasma is generated at room temperature.
    Type: Application
    Filed: June 20, 2001
    Publication date: November 22, 2001
    Applicant: Precision Instrument Development Center
    Inventors: Cheng-Chung Jaing, Jyh-Shin Chen, Jen-Inn Chyi, Jeng-Jiing Sheu
  • Patent number: 6309895
    Abstract: A preparation for forming a thin film capacitor includes forming an amorphous ferroelectric film, such as barium strontium titanate [(Ba,Sr)TiO3] film, for use as an interface between a metal electrode and a polycrystalline ferroelectric film, such as (Ba,Sr) TiO3 film. The polycrystalline ferroelectric film serves as a dielectric layer of the thin film capacitor in view of the fact that the polycrystalline ferroelectric film has a high dielectric constant. The amorphous ferroelectric film serves as a buffer layer for inhibiting the leakage current of the thin film capacitor. The amorphous ferroelectric film is grown by sputtering and by introducing a working gas, such as argon, and a reactive gas, such as oxygen, into a reaction chamber in which a plasma is generated at room temperature.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: October 30, 2001
    Assignee: Precision Instrument Development Center, National Science Council
    Inventors: Cheng-Chung Jaing, Jyh-Shin Chen, Jen-Inn Chyi, Jeng-Jiing Sheu
  • Publication number: 20010029053
    Abstract: A preparation for forming a thin film capacitor includes forming an amorphous ferroelectric film, such as barium strontium titanate [(Ba,Sr)TiO3] film, for use as an interface between a metal electrode and a polycrystalline ferroelectric film, such as (Ba,Sr) TiO3 film. The polycrystalline ferroelectric film serves as a dielectric layer of the thin film capacitor in view of the fact that the polycrystalline ferroelectric film has a high dielectric constant. The amorphous ferroelectric film serves as a buffer layer for inhibiting the leakage current of the thin film capacitor. The amorphous ferroelectric film is grown by sputtering and by introducing a working gas, such as argon, and a reactive gas, such as oxygen, into a reaction chamber in which a plasma is generated at room temperature.
    Type: Application
    Filed: June 20, 2001
    Publication date: October 11, 2001
    Applicant: Precision Instrument Development Center, National Science Council
    Inventors: Cheng-Chung Jaing, Jyh-Shin Chen, Jen-Inn Chyi, Jeng-Jiing Sheu