Patents by Inventor Jeng-Ya D. Yeh

Jeng-Ya D. Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140084381
    Abstract: Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Inventors: Jeng-Ya D. Yeh, Peter J. Vandervoorn, Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park
  • Patent number: 8669617
    Abstract: Provided are devices having at least three and at least four different types of transistors wherein the transistors are distinguished at least by the thicknesses and or compositions of the gate dielectric regions. Methods for making devices having three and at least four different types of transistors that are distinguished at least by the thicknesses and or compositions of the gate dielectric regions are also provided.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 11, 2014
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Curtis Tsai, Joodong Park, Jeng-Ya D. Yeh, Walid M. Hafez
  • Publication number: 20140001569
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric composed of a first dielectric layer disposed on the first fin active region, and a second, different, dielectric layer disposed on the first dielectric layer. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric composed of the second dielectric layer disposed on the second fin active region.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Publication number: 20130270559
    Abstract: Techniques for providing non-volatile antifuse memory elements and other antifuse links are disclosed herein. In sonic embodiments, the antifuse memory elements are configured with non-planar topology such as FinFET topology. In some such embodiments, the fin topology can be manipulated and used to effectively promote lower breakdown voltage transistors, by creating enhanced-emission sites which are suitable for use in lower voltage non-volatile antifuse memory elements. In one example embodiment, a semiconductor antifuse device is provided that includes a non-planar diffusion area having a fin configured with a tapered portion, a dielectric isolation layer on the fin including the tapered portion, and a gate material on the dielectric isolation layer. The tapered portion of the fin may be formed, for instance, by oxidation, etching, and/or ablation, and in some cases includes a base region and a thinned region, and the thinned region is at least 50% thinner than the base region.
    Type: Application
    Filed: October 18, 2011
    Publication date: October 17, 2013
    Inventors: Walid M. Hafez, Chia-Hong Jan, Curtis Tsai, Joodong Park, Jeng-Ya D. Yeh
  • Publication number: 20120161237
    Abstract: Provided are devices having at least three and at least four different types of transistors wherein the transistors are distinguished at least by the thicknesses and or compositions of the gate dielectric regions. Methods for making devices having three and at least four different types of transistors that are distinguished at least by the thicknesses and or compositions of the gate dielectric regions are also provided.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Chia-Hong Jan, Curtis Tsai, Joodong Park, Jeng-Ya D. Yeh, Walid M. Hafez