Patents by Inventor Jengyi Yu

Jengyi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145272
    Abstract: Methods for making thin-films on semiconductor substrates, which may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Application
    Filed: October 5, 2023
    Publication date: May 2, 2024
    Inventors: Jengyi YU, Samantha S.H. TAN, Mohammed Haroon ALVI, Richard WISE, Yang PAN, Richard Alan GOTTSCHO, Adrien LAVOIE, Sivananda Krishnan KANAKASABAPATHY, Timothy William WEIDMAN, Qinghuang LIN, Jerome S. HUBACEK
  • Publication number: 20240112896
    Abstract: A method for cleaning surfaces of a substrate processing chamber includes a) supplying a first gas selected from a group consisting of silicon tetrachloride (SiCl4), carbon tetrachloride (CCl4), a hydrocarbon (CxHy where x and y are integers) and molecular chlorine (Cl2), boron trichloride (BCl3), and thionyl chloride (SOCl2); b) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; c) extinguishing the plasma and evacuating the substrate processing chamber; d) supplying a second gas including fluorine species; e) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; and f) extinguishing the plasma and evacuating the substrate processing chamber.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 4, 2024
    Inventors: Jengyi Yu, Samantha SiamHwa Tan, Seongjun Heo, Ge Yuan, Siva Krishnan Kanakasabapathy
  • Publication number: 20240087904
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer (e.g., spacer footing) needs to be selectively etched in a presence of an exposed silicon-containing layer, such as SiOC, SiON, SiONC, amorphous silicon, SiC, or SiN. In order to reduce damage to the silicon-containing layer the process involves passivating the silicon-containing layer towards a tin oxide etch chemistry, etching the tin oxide, and repeating passivation and etch in an alternating fashion. For example, passivation and etch can be each performed between 2-50 times. In one implementation, passivation is performed by treating the substrate with an oxygen-containing reactant, activated in a plasma, and the tin oxide etching is performed by a chlorine-based chemistry, such as using a mixture of Cl2 and BCl3.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 14, 2024
    Inventors: Seongjun Heo, Jengyi Yu, Chen-Wei Liang, Alan J. Jensen, Samantha S.H. Tan
  • Publication number: 20240036474
    Abstract: Various techniques for controlling metal-containing contamination on a semiconductor substrate are provided herein. Such techniques may involve one or more of a post-development bake treatment, a chemical treatment, a plasma treatment, a light treatment, and a backside and bevel edge clean. The techniques may be combined as desired for a particular application. In many cases, the techniques are used to address metal-containing contamination that is generated during a photoresist development operation.
    Type: Application
    Filed: March 31, 2022
    Publication date: February 1, 2024
    Inventors: Daniel PETER, Samantha SiamHwa TAN, Jengyi Yu, Da Li, Meng Xue, Wook Choi, Ji Yeon Kim, Alan J. Jensen, Shahd Hassan Labib, Younghee Lee, Hongxiang Zhao
  • Patent number: 11848212
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer (e.g., spacer footing) needs to be selectively etched in a presence of an exposed silicon-containing layer, such as SiOC, SiON, SiONC, amorphous silicon, SiC, or SiN. In order to reduce damage to the silicon-containing layer the process involves passivating the silicon-containing layer towards a tin oxide etch chemistry, etching the tin oxide, and repeating passivation and etch in an alternating fashion. For example, passivation and etch can be each performed between 2-50 times. In one implementation, passivation is performed by treating the substrate with an oxygen-containing reactant, activated in a plasma, and the tin oxide etching is performed by a chlorine-based chemistry, such as using a mixture of Cl2 and BCl3.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: December 19, 2023
    Assignee: Lam Research Corporation
    Inventors: Seongjun Heo, Jengyi Yu, Chen-Wei Liang, Alan J. Jensen, Samantha S. H. Tan
  • Patent number: 11842888
    Abstract: A method for cleaning surfaces of a substrate processing chamber includes a) supplying a first gas selected from a group consisting of silicon tetrachloride (SiCl4), carbon tetrachloride (CCl4), a hydrocarbon (CxHy where x and y are integers) and molecular chlorine (Cl2), boron trichloride (BCl3), and thionyl chloride (SOCl2); b) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; c) extinguishing the plasma and evacuating the substrate processing chamber; d) supplying a second gas including fluorine species; e) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; and f) extinguishing the plasma and evacuating the substrate processing chamber.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: December 12, 2023
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha SiamHwa Tan, Seongjun Heo, Ge Yuan, Siva Krishnan Kanakasabapathy
  • Publication number: 20230314954
    Abstract: Dry backside and bevel edge clean is performed without exposure to plasma to remove unwanted photoresist material from a substrate. The substrate is supported on a substrate support and elevated by minimum contact area (MCA) supports so that etch gas can access a backside of the substrate. A gas distributor delivers curtain gas to a frontside of the substrate to protect photoresist material on the frontside. An etch gas delivery source delivers a first etch gas flow to the backside, and one or more peripheral gas inlets deliver a second etch gas flow to a periphery of the frontside and around the bevel edge. A radiative heat source is positioned below the substrate to heat the substrate.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 5, 2023
    Inventors: Daniel PETER, Jengyi YU, Samantha Siamhwa TAN, Meng XUE, Da LI, Keith Edward DAWSON, Clint Edward THOMAS, John Danny Baterina PACHO
  • Publication number: 20230290657
    Abstract: Methods for making thin-films on semiconductor substrates, which may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 14, 2023
    Inventors: Jengyi Yu, Samantha S.H. Tan, Mohammed Haroon Alvi, Richard Wise, Yang Pan, Richard Alan Gottscho, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Timothy William Weidman, Qinghuang Lin, Jerome S. Hubacek
  • Publication number: 20230230819
    Abstract: A method for cleaning a plasma processing chamber comprising one or more cycles is provided. Each cycle comprises performing an oxygen containing plasma cleaning phase, performing a volatile chemistry type residue cleaning phase, and performing a fluorine containing plasma cleaning phase.
    Type: Application
    Filed: June 8, 2021
    Publication date: July 20, 2023
    Inventors: Ran LIN, Wenbing YANG, Tamal MUKHERJEE, Jengyi YU, Samantha SiamHwa TAN, Yang PAN, Yiwen FAN
  • Publication number: 20230230811
    Abstract: Techniques described herein relate to methods, apparatus, and systems for promoting adhesion between a substrate and a metal-containing photoresist. For instance, the method may include receiving the substrate in a reaction chamber, the substrate having a first material exposed on its surface, the first material including a silicon-based material and/or a carbon-based material; generating a plasma from a plasma generation gas source that is substantially free of silicon, where the plasma includes chemical functional groups; exposing the substrate to the plasma to modify the surface of the substrate by forming bonds between the first material and chemical functional groups from the plasma; and depositing the metal-containing photoresist on the modified surface of the substrate, where the bonds between the first material and the chemical functional groups promote adhesion between the substrate and the metal-containing photoresist.
    Type: Application
    Filed: May 25, 2021
    Publication date: July 20, 2023
    Inventors: Jengyi Yu, Da Li, Younghee Lee, Samantha S.H. Tan, Alan J. Jensen, Jun Xue, Mary Anne Manumpil
  • Publication number: 20230197459
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer (e.g., spacer footing) needs to be selectively etched in a presence of an exposed silicon-containing layer, such as SiOC, SiON, SiONC, amorphous silicon, SiC, or SiN. In order to reduce damage to the silicon-containing layer the process involves passivating the silicon-containing layer towards a tin oxide etch chemistry, etching the tin oxide, and repeating passivation and etch in an alternating fashion. For example, passivation and etch can be each performed between 2-50 times. In one implementation, passivation is performed by treating the substrate with an oxygen-containing reactant, activated in a plasma, and the tin oxide etching is performed by a chlorine-based chemistry, such as using a mixture of Cl2 and BCl3.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 22, 2023
    Inventors: Seongjun Heo, Jengyi Yu, Chen-Wei Liang, Alan J. Jensen, Samantha S.H. Tan
  • Publication number: 20230148265
    Abstract: A method for cleaning surfaces of a substrate processing chamber includes a) supplying a first gas selected from a group consisting of silicon tetrachloride (SiCl4), carbon tetrachloride (CCl4), a hydrocarbon (CxHy where x and y are integers) and molecular chlorine (Cl2), boron trichloride (BCl3), and thionyl chloride (SOCl2); b) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; c) extinguishing the plasma and evacuating the substrate processing chamber; d) supplying a second gas including fluorine species; e) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; and f) extinguishing the plasma and evacuating the substrate processing chamber.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: Jengyi YU, Samantha SiamHwa TAN, Seongjun HEO, Ge YUAN, Siva Krishnan KANAKASABAPATHY
  • Publication number: 20230045336
    Abstract: Methods for making thin-films on semiconductor substrates, may be patterned using EUV, include: depositing the organometallic polymer-like material onto the surface of the semiconductor substrate, exposing the surface to EUV to form a pattern, and developing the pattern for later transfer to underlying layers. The depositing operations may be performed by chemical vapor deposition (CVD), atomic layer deposition (ALD), and ALD with a CVD component, such as a discontinuous, ALD-like process in which metal precursors and counter-reactants are separated in either time or space.
    Type: Application
    Filed: July 2, 2021
    Publication date: February 9, 2023
    Inventors: Jengyi Yu, Samantha S.H. Tan, Mohammed Haroon Alvi, Richard Wise, Yang Pan, Richard Alan Gottscho, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Timothy William Weidman, Qinghuang Lin, Jerome S. Hubacek
  • Publication number: 20230031955
    Abstract: Various embodiments described herein relate to methods, apparatus, and systems for treating metal-containing photoresist to modify material properties of the photoresist. For instance, the techniques herein may involve providing a substrate in a process chamber, where the substrate includes a photoresist layer over a substrate layer, and where the photoresist includes metal, and treating the photoresist to modify material properties of the photoresist such that etch selectivity in a subsequent post-exposure dry development process is increased. In various embodiments, the treatment may involve exposing the substrate to elevated temperatures and/or to a remote plasma. One or more process conditions such as temperature, pressure, ambient gas chemistry, gas flow/ratio, and moisture may be controlled during treatment to tune the material properties as desired.
    Type: Application
    Filed: January 29, 2021
    Publication date: February 2, 2023
    Applicant: Lam Research Corporation
    Inventors: Jengyi Yu, Da Li, Samantha S.H. Tan, Younghee Lee
  • Patent number: 11551938
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer (e.g., spacer footing) needs to be selectively etched in a presence of an exposed silicon-containing layer, such as SiOC, SiON, SiONC, amorphous silicon, SiC, or SiN. In order to reduce damage to the silicon-containing layer the process involves passivating the silicon-containing layer towards a tin oxide etch chemistry, etching the tin oxide, and repeating passivation and etch in an alternating fashion. For example, passivation and etch can be each performed between 2-50 times. In one implementation, passivation is performed by treating the substrate with an oxygen-containing reactant, activated in a plasma, and the tin oxide etching is performed by a chlorine-based chemistry, such as using a mixture of Cl2 and BCl3.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: January 10, 2023
    Assignee: Lam Research Corporation
    Inventors: Seongjun Heo, Jengyi Yu, Chen-Wei Liang, Alan J. Jensen, Samantha S. H. Tan
  • Publication number: 20220344136
    Abstract: A metal-containing photoresist film may be deposited on a semiconductor substrate using a dry deposition technique. Unintended metal-containing photoresist material may form on internal surfaces of a process chamber during deposition, bevel and backside cleaning, baking, development, or etch operations. An in situ dry chamber clean may be performed to remove the unintended metal-containing photoresist material by exposure to an etch gas. The dry chamber clean may be performed at elevated temperatures without striking a plasma. In some embodiments, the dry chamber clean may include pumping/purging and conditioning operations.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 27, 2022
    Inventors: Daniel Peter, Da Li, Timothy William Weidman, Boris Volosskiy, Chenghao Wu, Katie Lynn Nardi, Kevin Li Gu, Leon Taleh, Samantha SiamHwa Tan, Jengyi Yu, Meng Xue
  • Publication number: 20220270877
    Abstract: A method of processing a substrate includes: providing a substrate having one or more mandrels comprising a mandrel material, wherein a layer of a spacer material coats horizontal surfaces and sidewalls of the one or more mandrels; and etching and completely removing the layer of the spacer material from the horizontal surfaces of the one or more mandrels and thereby exposing the mandrel material, without completely removing the spacer material residing at the sidewalls of the one or more mandrels. The etching includes exposing the substrate to a plasma formed using a mixture comprising a first gas and a polymer-forming gas, and wherein the etching comprises forming a polymer on the substrate. Polymer-forming gas may include carbon (C) and hydrogen (H).
    Type: Application
    Filed: February 10, 2022
    Publication date: August 25, 2022
    Inventors: Jengyi Yu, Samantha S.H. Tan, Yu Jiang, Hui-Jung Wu, Richard Wise, Yang Pan, Nader Shamma, Boris Volosskiy
  • Publication number: 20220244645
    Abstract: Development of resists are useful, for example, to form a patterning mask in the context of high-resolution patterning. Development can be accomplished using a halide-containing chemistry such as a hydrogen halide. A metal-containing resist film may be deposited on a semiconductor substrate using a dry or wet deposition technique. The resist film may be an EUV-sensitive organo-metal oxide or organo-metal-containing thin film resist. After exposure, the photopatterned metal-containing resist is developed using wet or dry development.
    Type: Application
    Filed: June 25, 2020
    Publication date: August 4, 2022
    Inventors: Samantha SiamHwa Tan, Jengyi Yu, Da Li, Yiwen Fan, Yang Pan, Jeffrey Marks, Richard A. Gottscho, Daniel Peter, Timothy William Weidman, Boris Volosskiy, Wenbing Yang
  • Publication number: 20220216050
    Abstract: Provided herein are methods and systems for reducing roughness of an EUV resist and improving etched features. The methods involve descumming an EUV resist, filling divots of the EUV resist, and protecting EUV resists with a cap. The resulting EUV resist has smoother features and increased selectivity to an underlying layer, which improves the quality of etched features. Following etching of the underlying layer, the cap may be removed.
    Type: Application
    Filed: April 14, 2020
    Publication date: July 7, 2022
    Applicant: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha S.H. Tan, Liu Yang, Chen-Wei Liang, Boris Volosskiy, Richard Wise, Yang Pan, Da Li, Ge Yuan, Andrew Liang
  • Publication number: 20220208551
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer (e.g., spacer footing) needs to be selectively etched in a presence of an exposed silicon-containing layer, such as SiOC, SiON, SiONC, amorphous silicon, SiC, or SiN. In order to reduce damage to the silicon-containing layer the process involves passivating the silicon-containing layer towards a tin oxide etch chemistry, etching the tin oxide, and repeating passivation and etch in an alternating fashion. For example, passivation and etch can be each performed between 2-50 times.
    Type: Application
    Filed: June 22, 2020
    Publication date: June 30, 2022
    Inventors: Seongjun Heo, Jengyi Yu, Chen-Wei Liang, Alan J. Jensen, Samantha S.H. Tan