Patents by Inventor Jenn-Hann Larry Wang
Jenn-Hann Larry Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12109023Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: GrantFiled: July 11, 2023Date of Patent: October 8, 2024Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
-
Patent number: 12023155Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymer composition having carbonate and aromatic isocyanate chains, a composition observed to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: GrantFiled: October 7, 2021Date of Patent: July 2, 2024Assignee: MEDTRONIC MINIMED, INC.Inventor: Jenn-Hann Larry Wang
-
Publication number: 20230346274Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: ApplicationFiled: July 11, 2023Publication date: November 2, 2023Applicant: Medtronic MiniMed, Inc.Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
-
Patent number: 11730406Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: GrantFiled: September 17, 2021Date of Patent: August 22, 2023Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
-
Publication number: 20220095965Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: ApplicationFiled: December 9, 2021Publication date: March 31, 2022Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Publication number: 20220022786Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymer composition having carbonate and aromatic isocyanate chains, a composition observed to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: ApplicationFiled: October 7, 2021Publication date: January 27, 2022Applicant: Medtronic MiniMed, Inc.Inventor: Jenn-Hann Larry Wang
-
Publication number: 20220000401Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: ApplicationFiled: September 17, 2021Publication date: January 6, 2022Applicant: Medtronic MiniMed, Inc.Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
-
Patent number: 11213231Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: GrantFiled: April 20, 2020Date of Patent: January 4, 2022Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Patent number: 11179078Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymer composition having carbonate and aromatic isocyanate chains, a composition observed to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: GrantFiled: June 2, 2017Date of Patent: November 23, 2021Assignee: MEDTRONIC MINIMED, INC.Inventor: Jenn-Hann Larry Wang
-
Patent number: 11134872Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: GrantFiled: May 16, 2018Date of Patent: October 5, 2021Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
-
Publication number: 20200237268Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: ApplicationFiled: April 20, 2020Publication date: July 30, 2020Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Patent number: 10660555Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: GrantFiled: May 22, 2019Date of Patent: May 26, 2020Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Publication number: 20190338339Abstract: Embodiments of the invention provide methods and materials for making analyte sensors having a plurality of layered elements such as amperometric glucose sensors that are used by diabetic individuals to monitor blood sugar concentrations. Embodiments of the invention utilize plasma deposition technologies to form thin films of adhesion promoting compositions useful in such sensors. Sensors that incorporate the thin film compositions formed by these processes exhibit a number of desirable characteristics.Type: ApplicationFiled: July 10, 2019Publication date: November 7, 2019Applicant: MEDTRONIC MINIMED, INC.Inventors: Yiwen Li, Jenn-Hann Larry Wang, Rajiv Shah
-
Publication number: 20190269355Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: ApplicationFiled: May 22, 2019Publication date: September 5, 2019Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Patent number: 10342468Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: GrantFiled: November 20, 2017Date of Patent: July 9, 2019Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Patent number: 10335077Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: GrantFiled: November 20, 2017Date of Patent: July 2, 2019Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Patent number: 10335076Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: GrantFiled: November 20, 2017Date of Patent: July 2, 2019Assignee: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
-
Publication number: 20190094169Abstract: The invention pertains to analyte sensors designed to include layered compositions that provide these sensors with enhanced functional and/or material properties including, for example, resistance to damage caused by ethylene oxide during sterilization processes. Embodiments of the invention include polyvinyl alcohol N-methyl-4(4?-formylstyryl)pyridinium (SbQ) polymer materials and methods for employing such materials during the ethylene oxide sterilization of glucose sensors.Type: ApplicationFiled: November 26, 2018Publication date: March 28, 2019Applicant: MEDTRONIC MINIMED, INC.Inventors: Rajiv Shah, Qingling Yang, Robert C. Mucic, Jenn-Hann Larry Wang
-
Publication number: 20180325436Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.Type: ApplicationFiled: May 16, 2018Publication date: November 15, 2018Applicant: MEDTRONIC MINIMED, INC.Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
-
Publication number: 20180074011Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.Type: ApplicationFiled: November 20, 2017Publication date: March 15, 2018Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah