Patents by Inventor Jenn-Hann Larry Wang

Jenn-Hann Larry Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12109023
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Grant
    Filed: July 11, 2023
    Date of Patent: October 8, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
  • Patent number: 12023155
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymer composition having carbonate and aromatic isocyanate chains, a composition observed to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: July 2, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventor: Jenn-Hann Larry Wang
  • Publication number: 20230346274
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
  • Patent number: 11730406
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: August 22, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
  • Publication number: 20220095965
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Publication number: 20220022786
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymer composition having carbonate and aromatic isocyanate chains, a composition observed to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Applicant: Medtronic MiniMed, Inc.
    Inventor: Jenn-Hann Larry Wang
  • Publication number: 20220000401
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
  • Patent number: 11213231
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: January 4, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 11179078
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymer composition having carbonate and aromatic isocyanate chains, a composition observed to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: November 23, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventor: Jenn-Hann Larry Wang
  • Patent number: 11134872
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 5, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
  • Publication number: 20200237268
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: April 20, 2020
    Publication date: July 30, 2020
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10660555
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 26, 2020
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Publication number: 20190338339
    Abstract: Embodiments of the invention provide methods and materials for making analyte sensors having a plurality of layered elements such as amperometric glucose sensors that are used by diabetic individuals to monitor blood sugar concentrations. Embodiments of the invention utilize plasma deposition technologies to form thin films of adhesion promoting compositions useful in such sensors. Sensors that incorporate the thin film compositions formed by these processes exhibit a number of desirable characteristics.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 7, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Yiwen Li, Jenn-Hann Larry Wang, Rajiv Shah
  • Publication number: 20190269355
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 5, 2019
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10342468
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 9, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10335077
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 2, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Patent number: 10335076
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 2, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah
  • Publication number: 20190094169
    Abstract: The invention pertains to analyte sensors designed to include layered compositions that provide these sensors with enhanced functional and/or material properties including, for example, resistance to damage caused by ethylene oxide during sterilization processes. Embodiments of the invention include polyvinyl alcohol N-methyl-4(4?-formylstyryl)pyridinium (SbQ) polymer materials and methods for employing such materials during the ethylene oxide sterilization of glucose sensors.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Qingling Yang, Robert C. Mucic, Jenn-Hann Larry Wang
  • Publication number: 20180325436
    Abstract: Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors. In typical embodiments of the invention, the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture formed to include limiting amounts of catalyst and/or polycarbonate compounds so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 15, 2018
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Jenn-Hann Larry Wang, Dero Hovanes, Poonam S. Gulati
  • Publication number: 20180074011
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: Jenn-Hann Larry Wang, Michael E. Miller, Raghavendhar Gautham, Yiwen Li, Rajiv Shah