Patents by Inventor Jenn-Kuen Leong

Jenn-Kuen Leong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879853
    Abstract: An inspection system may include an illumination source to generate an illumination beam, illumination optics to direct the illumination beam to a sample at an off-axis angle along an illumination direction, and collection optics to collect scattered light from the sample in a dark-field mode, where the scattered light from the sample includes surface haze associated with light scattered from a surface of the sample, and where at least a at least a portion of the surface haze has elliptical polarizations. The system may further include pupil-plane optics to convert the polarizations of the surface haze across the pupil to linear polarization that is aligned parallel to a selected haze orientation direction. The system may include a linear polarizer to reject the surface haze aligned parallel to this haze orientation direction and a detector to generate a dark-field image of the sample based on light passed by the linear polarizer.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 23, 2024
    Assignee: KLA Corporation
    Inventors: Xuefeng Liu, Jenn-Kuen Leong, Yung-Ho Alex Chuang, John Fielden
  • Patent number: 11733172
    Abstract: A dark-field optical system may include a rotational objective lens assembly with a dark-field objective lens to collect light from a sample within a collection numerical aperture, where the dark-field objective lens includes an entrance aperture and an exit aperture at symmetrically-opposed azimuth angles with respect to an optical axis, a rotational bearing to allow rotation of at least a part of the dark-field objective lens including the entrance aperture and the exit aperture around the optical axis, and a rotational driver to control a rotational angle of the entrance aperture. The system may also include a multi-angle illumination sub-system to illuminate the sample with an illumination beam through the entrance aperture at two or more illumination azimuth angles, where an azimuth angle of the illumination beam on the sample is selectable by rotating the objective lens to any of the two or more illumination azimuth angles.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: August 22, 2023
    Assignee: KLA Corporation
    Inventors: Anatoly Romanovsky, Jenn-Kuen Leong, Daniel Kavaldjiev, Chunhai Wang, Bret Whiteside, Zhiwei Xu
  • Publication number: 20220268710
    Abstract: An inspection system may include an illumination source to generate an illumination beam, illumination optics to direct the illumination beam to a sample at an off-axis angle along an illumination direction, and collection optics to collect scattered light from the sample in a dark-field mode, where the scattered light from the sample includes surface haze associated with light scattered from a surface of the sample, and where at least a at least a portion of the surface haze has elliptical polarizations. The system may further include pupil-plane optics to convert the polarizations of the surface haze across the pupil to linear polarization that is aligned parallel to a selected haze orientation direction. The system may include a linear polarizer to reject the surface haze aligned parallel to this haze orientation direction and a detector to generate a dark-field image of the sample based on light passed by the linear polarizer.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 25, 2022
    Inventors: Xuefeng Liu, Jenn-Kuen Leong, Yung-Ho Alex Chuang, John Fielden
  • Patent number: 11243175
    Abstract: A system may include illumination optics to direct an illumination beam to a sample at an off-axis angle, collection optics to collect scattered light from the sample, and a phase mask located at a first pupil plane to provide different phase shifts for light in two or more pupil regions of a collection area to reshape a point spread function of light scattered from one or more particles on a surface of the sample. The system may further include a polarization rotator located at a second pupil plane, where the polarization rotator provides a spatially-varying polarization rotation angle selected to rotate light scattered from the surface of the sample to a selected polarization angle, a polarizer to reject light polarized along the selected polarization angle, and a detector to generate a dark-field image of the sample based on light passed by the polarizer.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: February 8, 2022
    Assignee: KLA Corporation
    Inventors: Xuefeng Liu, Jenn-Kuen Leong, Daniel Kavaldjiev, John Fielden
  • Publication number: 20210356406
    Abstract: A dark-field optical system may include a rotational objective lens assembly with a dark-field objective lens to collect light from a sample within a collection numerical aperture, where the dark-field objective lens includes an entrance aperture and an exit aperture at symmetrically-opposed azimuth angles with respect to an optical axis, a rotational bearing to allow rotation of at least a part of the dark-field objective lens including the entrance aperture and the exit aperture around the optical axis, and a rotational driver to control a rotational angle of the entrance aperture. The system may also include a multi-angle illumination sub-system to illuminate the sample with an illumination beam through the entrance aperture at two or more illumination azimuth angles, where an azimuth angle of the illumination beam on the sample is selectable by rotating the objective lens to any of the two or more illumination azimuth angles.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 18, 2021
    Inventors: Anatoly Romanovsky, Jenn-Kuen Leong, Daniel Kavaldjiev, Chunhai Wang, Bret Whiteside, Steve Xu
  • Publication number: 20210164918
    Abstract: A system may include illumination optics to direct an illumination beam to a sample at an off-axis angle, collection optics to collect scattered light from the sample, and a phase mask located at a first pupil plane to provide different phase shifts for light in two or more pupil regions of a collection area to reshape a point spread function of light scattered from one or more particles on a surface of the sample. The system may further include a polarization rotator located at a second pupil plane, where the polarization rotator provides a spatially-varying polarization rotation angle selected to rotate light scattered from the surface of the sample to a selected polarization angle, a polarizer to reject light polarized along the selected polarization angle, and a detector to generate a dark-field image of the sample based on light passed by the polarizer.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Applicant: KLA Corporation
    Inventors: Xuefeng Liu, Jenn-Kuen Leong, Daniel Kavaldjiev, John Fielden
  • Patent number: 10948423
    Abstract: A dark-field inspection system may include an illumination source to generate an illumination beam, illumination optics configured to direct the illumination beam to a sample at an off-axis angle along an illumination direction, collection optics to collect scattered light from the sample in response to the illumination beam in a dark-field mode, a polarization rotator located at a pupil plane of the one or more collection optics, where the polarization rotator provides a spatially-varying polarization rotation angle selected to rotate light scattered from a surface of the sample to a selected polarization angle, a polarizer aligned to reject light polarized along the selected polarization angle to reject the light scattered from a surface of the sample, and a detector to generate a dark-field image of the sample based on scattered light from the sample passed by the polarizer.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: March 16, 2021
    Assignee: KLA Corporation
    Inventors: Xuefeng Liu, Jenn-Kuen Leong, Daniel Kavaldjiev, John Fielden
  • Patent number: 10942135
    Abstract: A dark field inspection system may include an illumination source to generate an illumination beam, one or more illumination optics to direct the illumination beam to a sample at an off-axis angle along an illumination direction, a detector, one or more collection optics to generate a dark-field image of the sample on the detector based on light collected from the sample in response to the illumination beam, and a radial polarizer located at a pupil plane of the one or more collection optics, where the radial polarizer rejects light with radial polarization with respect to an apex point in the pupil plane corresponding to specular reflection of the illumination beam from the sample.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: March 9, 2021
    Assignee: KLA Corporation
    Inventors: Jenn-Kuen Leong, Daniel Kavaldjiev, Guoheng Zhao
  • Publication number: 20200264109
    Abstract: A dark-field inspection system may include an illumination source to generate an illumination beam, illumination optics configured to direct the illumination beam to a sample at an off-axis angle along an illumination direction, collection optics to collect scattered light from the sample in response to the illumination beam in a dark-field mode, a polarization rotator located at a pupil plane of the one or more collection optics, where the polarization rotator provides a spatially-varying polarization rotation angle selected to rotate light scattered from a surface of the sample to a selected polarization angle, a polarizer aligned to reject light polarized along the selected polarization angle to reject the light scattered from a surface of the sample, and a detector to generate a dark-field image of the sample based on scattered light from the sample passed by the polarizer.
    Type: Application
    Filed: September 20, 2019
    Publication date: August 20, 2020
    Inventors: Xuefeng Liu, Jenn-Kuen Leong, Daniel Kavaldjiev, John Fielden
  • Publication number: 20200150054
    Abstract: A dark field inspection system may include an illumination source to generate an illumination beam, one or more illumination optics to direct the illumination beam to a sample at an off-axis angle along an illumination direction, a detector, one or more collection optics to generate a dark-field image of the sample on the detector based on light collected from the sample in response to the illumination beam, and a radial polarizer located at a pupil plane of the one or more collection optics, where the radial polarizer rejects light with radial polarization with respect to a reference point in the pupil plane corresponding to specular reflection of the illumination beam from the sample.
    Type: Application
    Filed: September 20, 2019
    Publication date: May 14, 2020
    Inventors: Jenn-Kuen Leong, Daniel Kavaldjiev, Guoheng Zhao
  • Patent number: 9291575
    Abstract: Systems and methods for inspecting a wafer are provided. One system includes an illumination subsystem configured to illuminate the wafer; a collection subsystem configured to collect light scattered from the wafer and to preserve the polarization of the scattered light; an optical element configured to separate the scattered light collected in different segments of the collection numerical aperture of the collection subsystem, where the optical element is positioned at a Fourier plane or a conjugate of the Fourier plane of the collection subsystem; a polarizing element configured to separate the scattered light in one of the different segments into different portions of the scattered light based on polarization; and a detector configured to detect one of the different portions of the scattered light and to generate output responsive to the detected light, which is used to detect defects on the wafer.
    Type: Grant
    Filed: November 2, 2014
    Date of Patent: March 22, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Guoheng Zhao, Jenn-Kuen Leong, Mehdi Vaez-Iravani
  • Publication number: 20150103348
    Abstract: Systems and methods for inspecting a wafer are provided. One system includes an illumination subsystem configured to illuminate the wafer; a collection subsystem configured to collect light scattered from the wafer and to preserve the polarization of the scattered light; an optical element configured to separate the scattered light collected in different segments of the collection numerical aperture of the collection subsystem, where the optical element is positioned at a Fourier plane or a conjugate of the Fourier plane of the collection subsystem; a polarizing element configured to separate the scattered light in one of the different segments into different portions of the scattered light based on polarization; and a detector configured to detect one of the different portions of the scattered light and to generate output responsive to the detected light, which is used to detect defects on the wafer.
    Type: Application
    Filed: November 2, 2014
    Publication date: April 16, 2015
    Inventors: Guoheng Zhao, Jenn-Kuen Leong, Mehdi Vaez-Iravani
  • Patent number: 8891079
    Abstract: Systems and methods for inspecting a wafer are provided. One system includes an illumination subsystem configured to illuminate the wafer; a collection subsystem configured to collect light scattered from the wafer and to preserve the polarization of the scattered light; an optical element configured to separate the scattered light collected in different segments of the collection numerical aperture of the collection subsystem, where the optical element is positioned at a Fourier plane or a conjugate of the Fourier plane of the collection subsystem; a polarizing element configured to separate the scattered light in one of the different segments into different portions of the scattered light based on polarization; and a detector configured to detect one of the different portions of the scattered light and to generate output responsive to the detected light, which is used to detect defects on the wafer.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: November 18, 2014
    Assignee: KLA-Tencor Corp.
    Inventors: Guoheng Zhao, Jenn-Kuen Leong, Mehdi Vaez-Iravani
  • Publication number: 20140009759
    Abstract: Systems and methods for inspecting a wafer are provided. One system includes an illumination subsystem configured to illuminate the wafer; a collection subsystem configured to collect light scattered from the wafer and to preserve the polarization of the scattered light; an optical element configured to separate the scattered light collected in different segments of the collection numerical aperture of the collection subsystem, where the optical element is positioned at a Fourier plane or a conjugate of the Fourier plane of the collection subsystem; a polarizing element configured to separate the scattered light in one of the different segments into different portions of the scattered light based on polarization; and a detector configured to detect one of the different. portions of the scattered light and to generate output responsive to the detected light, which is used to detect defects on the wafer.
    Type: Application
    Filed: December 7, 2011
    Publication date: January 9, 2014
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Guoheng Zhao, Jenn-Kuen Leong, Mehdi Vaez-Iravani
  • Patent number: 7525649
    Abstract: A surface inspection apparatus and a method are provided which include an illumination system configured to focus a beam of radiation at a non-orthogonal incidence angle to form an illumination line on a surface substantially in a plane of incidence of the focused beam. The apparatus and method further include a collection system configured to image the illumination line onto an array of detectors oriented parallel to the illumination line. The collection system includes an imaging lens for collecting light scattered from the illumination line, a focusing lens for focusing the collected light, and the array of detectors, each configured to detect a corresponding portion of the illumination line. The collection system may be configured to image the illumination line such that the width of the imaged illumination line on the array of detectors is larger than the pixel size of the detectors along the same direction.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: April 28, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Jenn-Kuen Leong, Guoheng Zhao, Mehdi Vaez-Iravani
  • Patent number: 6724473
    Abstract: A method and system of using exposure control to inspect a surface, such as a wafer. One inspection system comprises charge coupled devices (CCDs) as detectors. The exposure control function of each CCD is used to adjust integration times on individual taps of the CCD such that light scattered from the surface, which may contain multiple scattering regions, is within a dynamic range of the CCD during inspection.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 20, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Jenn-Kuen Leong, Guoheng Zhao, Mehdi Vaez-Iravani
  • Publication number: 20030223058
    Abstract: A method and system of using exposure control to inspect a surface, such as a wafer. One inspection system comprises charge coupled devices (CCDs) as detectors. The exposure control function of each CCD is used to adjust integration times on individual taps of the CCD such that light scattered from the surface, which may contain multiple scattering regions, is within a dynamic range of the CCD during inspection.
    Type: Application
    Filed: March 27, 2002
    Publication date: December 4, 2003
    Inventors: Jenn-Kuen Leong, Guoheng Zhao, Mehdi Vaez-Iravani