Patents by Inventor Jenn Liu

Jenn Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8822882
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid state laser and locating edges of the substrate. The cutting is stopped based on the edge location, to prevent impacting background elements. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: September 2, 2014
    Assignee: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Daniel J. Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20070248126
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Application
    Filed: May 15, 2007
    Publication date: October 25, 2007
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20050279740
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid state laser and locating edges of the substrate. The cutting is stopped based on the edge location, to prevent impacting background elements. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 22, 2005
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Daniel Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Patent number: 6960739
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 1, 2005
    Assignee: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20050215078
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Application
    Filed: April 28, 2005
    Publication date: September 29, 2005
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20030226832
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Application
    Filed: March 6, 2003
    Publication date: December 11, 2003
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Publication number: 20030226830
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Application
    Filed: February 11, 2003
    Publication date: December 11, 2003
    Applicant: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Patent number: 6580054
    Abstract: A process and system scribe sapphire substrates, by performing the steps of mounting a sapphire substrate, carrying an array of integrated device die, on a stage such as a movable X-Y stage including a vacuum chuck; and directing UV pulses of laser energy directed at a surface of the sapphire substrate using a solid-state laser. The pulses of laser energy have a wavelength below about 560 nanometers, and preferably between about 150 in 560 nanometers. In addition, energy density, spot size, and pulse duration are established at levels sufficient to induce ablation of sapphire. Control of the system, such as by moving the stage with a stationary beam path for the pulses, causes the pulses to contact the sapphire substrate in a scribe pattern at a rate of motion causing overlap of successive pulses sufficient to cut scribe lines in the sapphire substrate.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: June 17, 2003
    Assignee: New Wave Research
    Inventors: Kuo-Ching Liu, Pei Hsien Fang, Dan Dere, Jenn Liu, Jih-Chuang Huang, Antonio Lucero, Scott Pinkham, Steven Oltrogge, Duane Middlebusher
  • Patent number: 6261016
    Abstract: A multi-functional pen has a tapered tube head connected to a lower pen tube which houses a rotary device. The rotary device projects from the lower pen tube at one end. An upper pen tube is connected to the projecting end of the rotary device so as to complete the pen when the tube head, lower pen tube, rotary device and upper pen tube are assembled together. A refill is disposed within the pen and can be replaced by unscrewing any one of the tube head, the upper pen tube or the lower pen tube.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: July 17, 2001
    Inventor: Tsang-Jenn Liu
  • Patent number: 5988916
    Abstract: A rotary type automatic pencil includes a front socket member fastened to a sleeve at the bottom to hold a guide tube, a rotary member mounted within the front socket member around the guide tube, a helical spring mounted around the guide tube and fastened to the rotary member, a lead holder tube and a propelling element mounted inside the guide tube, wherein rotating the rotary member causes the helical spring to force the lead holder tube and the propelling element upwards/downwards along a longitudinal sliding slot of the guide tube; the propelling element is lowered to push the lead out of the lead holder tube when the lead holder tube is stopped in a lower limit position and the rotary member is continuously rotated.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: November 23, 1999
    Inventor: Tsang-Jenn Liu