Patents by Inventor Jennet Johnson

Jennet Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220249165
    Abstract: A catheter system (100) for treating a treatment site (106) within or adjacent to a vessel wall (108) or a heart valve includes an inflatable balloon (104), an optical fiber (122), and an energy source (124). The optical fiber (122) has a fiber proximal end (122P), and a fiber distal end (122D) positioned within the inflatable balloon (104). The optical fiber (122) is configured to receive an energy pulse so that the optical fiber (122) emits light energy in a direction away from the optical fiber (122) to generate a plasma pulse within the inflatable balloon (104). The optical fiber (122) can be tapered from the fiber proximal end (122P) toward the fiber distal end (122D). The energy source (124) in optical communication with the fiber proximal end (122P) of the optical fiber (122), and can include a laser. The optical fiber (122) includes a first fiber member (250) and a second fiber member (258) that is coupled to the first fiber member (250).
    Type: Application
    Filed: February 7, 2022
    Publication date: August 11, 2022
    Inventors: Christopher A. Cook, Eric Schultheis, Mina Mossayebi, George Liu, Itzhak Fang, Jennet Johnson, Theresa Shar
  • Publication number: 20220249166
    Abstract: A method for treating a treatment site (106) within or adjacent to a vessel wall (108) or heart valve includes tapering an optical fiber (122) from a fiber proximal end (122P) to a fiber distal end (122D); positioning the optical fiber (122) such that the fiber distal end (122D) is positioned within an inflatable balloon (104); coupling an energy source (124) in optical communication with the fiber proximal end (122P); and receiving an energy pulse from the energy source (124) into the fiber proximal end (122P) so that the optical fiber (122) emits light energy in a direction away from the optical fiber (122) to generate a plasma pulse within the inflatable balloon (104). The method can further include coupling a first fiber member (250) to a second fiber member (258), which can include fusing the first fiber member (250) to the second fiber member (258) at a fused region (256); and encircling the fused region (256) with a ferrule (248).
    Type: Application
    Filed: February 16, 2022
    Publication date: August 11, 2022
    Inventors: Christopher A. Cook, Eric Schultheis, Mina Mossayebi, George Liu, Itzhak Fang, Jennet Johnson, Theresa Shar