Patents by Inventor Jennifer A. Doudna

Jennifer A. Doudna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200140835
    Abstract: Engineered CRISPR-Cas9 nucleases with improved specificity and their use in genomic engineering, epigenomic engineering, genome targeting, and genome editing.
    Type: Application
    Filed: June 6, 2018
    Publication date: May 7, 2020
    Inventors: J. Keith Joung, Benjamin Kleinstiver, Janice Sha Chen, Jennifer Doudna, Yavuz Selim Dagdas, Ahmet Yildiz
  • Patent number: 10640791
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: May 5, 2020
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 10626419
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: April 21, 2020
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20200115688
    Abstract: The present disclosure provides a composition comprising an RNA-guided endonuclease and an agent that decreases the acidity of an endosome. The present disclosure provides a composition comprising: a) a ribonucleoprotein (RNP) complex comprising: i) an RNA-guided endonuclease; and ii) a guide RNA comprising a segment that binds to the RNA-guided endonuclease and a segment that binds to a target nucleic acid; and b) an agent that decreases the acidity of an endosome. The present disclosure provides methods of binding a target nucleic acid in a eukaryotic cell; and methods of genetically modifying a target eukaryotic cell.
    Type: Application
    Filed: July 31, 2018
    Publication date: April 16, 2020
    Inventors: Jennifer A. Doudna, Brett T. Staahl, Jennifer Sabo
  • Patent number: 10612045
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: April 7, 2020
    Assignees: The Regents of the University of California, University of Vienna, Emmanuelle Charpentier
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 10597680
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: March 24, 2020
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20200087642
    Abstract: The present disclosure provides compositions and methods for binding and/or cleaving a single stranded target nucleic acid. Subject compositions include a Cas9 polypeptide, a guide nucleic acid, and a PAMmer. A subject PAMmer is a single stranded oligonucleotide having a proto spacer adjacent motif (PAM) sequence and at least one of: a specificity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In some embodiments, the Cas9 polypeptide is a variant Cas9 polypeptide having reduced nuclease activity relative to a corresponding wild type Cas9 polypeptide. In some cases, methods of binding are for visualizing single stranded target nucleic acids using a detectable label. In some cases, methods of binding are for isolating, collecting, and/or analyzing at least one of: (i) bound single stranded target nucleic acids; and (ii) polypeptides associated with bound single stranded target nucleic acids.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 19, 2020
    Inventors: Jennifer A. Doudna, Samuel H. Sternberg, Mitchell O'Connell, Benjamin Oakes
  • Publication number: 20200087640
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20200080113
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: April 16, 2019
    Publication date: March 12, 2020
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20200071728
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: April 16, 2019
    Publication date: March 5, 2020
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 10577631
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: March 3, 2020
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 10570419
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: February 25, 2020
    Assignees: The Regents of the University of California, University of Vienna, Emmanuelle Charpentier
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 10570415
    Abstract: The present disclosure provides CasX proteins, nucleic acids encoding the CasX proteins, and modified host cells comprising the CasX proteins and/or nucleic acids encoding same. CasX proteins are useful in a variety of applications, which are provided. The present disclosure provides CasX guide RNAs that bind to and provide sequence specificity to the CasX proteins, nucleic acids encoding the CasX guide RNAs, and modified host cells comprising the CasX guide RNAs and/or nucleic acids encoding same. CasX guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides archaeal Cas9 polypeptides and nucleic acids encoding same, as well as their associated archaeal Cas9 guide RNAs and nucleic acids encoding same.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: February 25, 2020
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Jillian Banfield, David Burstein, Lucas Benjamin Harrington, Steven C. Strutt
  • Patent number: 10570418
    Abstract: The present disclosure provides compositions and methods of site-specific modification of a target DNA, or a protein associated with a target DNA, in a eukaryotic cell. The present disclosure provides methods of binding a target DNA in a eukaryotic cell.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: February 25, 2020
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Steven Lin, Brett T. Staahl
  • Patent number: 10563227
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: February 18, 2020
    Assignees: The Regents of the University of California, University of Vienna, Emmanuelle Charpentier
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 10550407
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: February 4, 2020
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20200032324
    Abstract: Embodiments disclosed herein include devices, methods, and systems for direct, selective, and sensitive detection of single-stranded target RNA sequences from various sources using a programmed Cas13a protein. When activated by binding a target RNA sequence, the Cas13a cleaves a tether releasing a reporter molecule that may then be detected. In some embodiments, the systems, methods, and devices may include a filter or membrane that may help to separate the tethered and untethered reporter molecules. These devices, systems, and techniques allow a user to rapidly process samples that may contain the target RNA, without needing to amplify the target sequences. These devices and methods may be used to assay a wide variety of samples and target RNA sources, for the presence or absence of a specific target RNA sequence. Compositions and kits, useful in practicing these methods, for example detecting a target RNA in a biological sample, are also described.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 30, 2020
    Inventors: Ted A. Baughman, James Cate, Jennifer Doudna, Gavin John Knott, Damian Madan, Eric Nalefski, Anne-Laure M. Le Ny, Brittney Thornton
  • Publication number: 20200017879
    Abstract: The present disclosure provides CasX proteins, nucleic acids encoding the CasX proteins, and modified host cells comprising the CasX proteins and/or nucleic acids encoding same. CasX proteins are useful in a variety of applications, which are provided. The present disclosure provides CasX guide RNAs that bind to and provide sequence specificity to the CasX proteins, nucleic acids encoding the CasX guide RNAs, and modified host cells comprising the CasX guide RNAs and/or nucleic acids encoding same. CasX guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides archaeal Cas9 polypeptides and nucleic acids encoding same, as well as their associated archaeal Cas9 guide RNAs and nucleic acids encoding same.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 16, 2020
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, David Burstein, Lucas Benjamin Harrington, Steven C. Strutt
  • Patent number: 10533190
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 14, 2020
    Assignees: The Regents of the University of California, University of Vienna, Emmanuelle Charpentier
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20200010879
    Abstract: The present disclosure provides methods for detecting a single-stranded target RNA. The present disclosure provides methods of cleaving a precursor C2c2 guide RNA array into two or more C2c2 guide RNAs. The present disclosure provides a kit for detecting a target RNA in a sample.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 9, 2020
    Inventors: Jennifer A. Doudna, Mitchell Ray O'Connell, Alexandra East-Seletsky, Spencer Charles Knight, James Harrison Doudna Cate