Patents by Inventor Jennifer A. Teed

Jennifer A. Teed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10503395
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: December 10, 2019
    Assignee: MICROSOFT TECHNOLOGY, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 10345932
    Abstract: The techniques described herein are directed to a computing device that receives data from an indirect input device. The data received may indicate or signal that one or more objects are on or within a detection area of the indirect input device. For example, the data may indicate that one or more objects are in contact with a surface of an indirect touch device. The techniques include determining parameters for the one or more objects and analyzing the parameters to determine whether the data is directed to a touch operation or to a mouse operation. To perform the touch operation or the mouse operation, the techniques further describe converting the data received from a first coordinate space of the indirect input device to a second coordinate space of a display screen.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: July 9, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Abzarian, Nidhi Sanghai, Eric C. Brown, Matthew K. Slemon, Jennifer A. Teed
  • Publication number: 20190113997
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Reed L. TOWNSEND, Xiao TU, Bryan SCOTT, Todd A. TORSET, Erik M. GEIDL, Samir S. PRADHAN, Jennifer A. TEED
  • Patent number: 10198101
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 5, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 10140011
    Abstract: User inputs can indicate an intent of a user to target a location on a display. In order to determine a targeted point based on a user input, a computing device can receive an indication of at least one point, an indication of a width, and an indication of a height. The computing device can estimate a portion of the display based on the indication of the at least one point, the indication of the width, and the indication of the height. The computing device can also determine the targeted point based on a location of the at least one point and based on a location of a portion of one or more objects within the estimated portion of the display.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 27, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jen Anderson, Eric Christian Brown, Jennifer Teed, Goran Predovic, Bruce Edward James, Fei Su, Maybelle Lippert, Mudit Agrawal
  • Publication number: 20180129410
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 9898190
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 20, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20170168708
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Application
    Filed: January 20, 2017
    Publication date: June 15, 2017
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20170115760
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Application
    Filed: September 1, 2016
    Publication date: April 27, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 9582140
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: February 28, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 9477333
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: October 25, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20160034136
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 4, 2016
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 9189096
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: November 17, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20150022478
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Application
    Filed: October 8, 2014
    Publication date: January 22, 2015
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20140368444
    Abstract: The techniques described herein are directed to a computing device that receives data from an indirect input device. The data received may indicate or signal that one or more objects are on or within a detection area of the indirect input device. For example, the data may indicate that one or more objects are in contact with a surface of an indirect touch device. The techniques include determining parameters for the one or more objects and analyzing the parameters to determine whether the data is directed to a touch operation or to a mouse operation. To perform the touch operation or the mouse operation, the techniques further describe converting the data received from a first coordinate space of the indirect input device to a second coordinate space of a display screen.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: David Abzarian, Nidhi Sanghai, Eric C. Brown, Matthew K. Slemon, Jennifer A. Teed
  • Patent number: 8884907
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: November 11, 2014
    Assignee: Microsoft Corporation
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20130285961
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Application
    Filed: June 17, 2013
    Publication date: October 31, 2013
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Publication number: 20130278529
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Application
    Filed: June 17, 2013
    Publication date: October 24, 2013
    Inventors: Reed L. Townsend, Xiao Tu, Bryan Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 8477103
    Abstract: The inertia system provides a common platform and application-programming interface (API) for applications to extend the input received from various multi-touch hardware devices to simulate real-world behavior of application objects. To move naturally, application objects should exhibit physical characteristics such as elasticity and deceleration. When a user lifts all contacts from an object, the inertia system provides additional manipulation events to the application so that the application can handle the events as if the user was still moving the object with touch. The inertia system generates the events based on a simulation of the behavior of the objects. If the user moves an object into another object, the inertia system simulates the boundary characteristics of the objects. Thus, the inertia system provides more realistic movement for application objects manipulated using multi-touch hardware and the API provides a consistent feel to manipulations across applications.
    Type: Grant
    Filed: October 26, 2008
    Date of Patent: July 2, 2013
    Assignee: Microsoft Corporation
    Inventors: Reed L. Townsend, Xiao Tu, Bryan D. Scott, Todd A. Torset, Kenneth W. Sykes, Samir S. Pradhan, Jennifer A. Teed
  • Patent number: 8466879
    Abstract: The manipulation system described herein provides a common platform and application-programming interface (API) for applications to communicate with various multi-touch hardware devices, and facilitates the interpretation of multi-touch input as one or more manipulations. Manipulations map more directly to user intentions than do individual touch inputs and add support for basic transformation of objects using multiple touch contacts. An application can use manipulations to support rotating, resizing, and translating multiple objects at the same time. The manipulation system outputs two-dimensional (2D) affine transforms that contain rotation, scale, and translation information. Thus, using the manipulation system the application author can focus more on building touch-capable applications and let the manipulation system handle the underlying transformations and communication with the multi-touch hardware.
    Type: Grant
    Filed: October 26, 2008
    Date of Patent: June 18, 2013
    Assignee: Microsoft Corporation
    Inventors: Reed L. Townsend, Xiao Tu, Bryan D. Scott, Todd A. Torset, Erik M. Geidl, Samir S. Pradhan, Jennifer A. Teed