Patents by Inventor Jennifer Ann Ayres

Jennifer Ann Ayres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11571587
    Abstract: A method for treating a disease, disorder, or condition in a subject in need thereof, by administering either or both of (i) at least one photoactivatable pharmaceutical agent, or (ii) a first plurality of energy-emitting particles, into the subject in a region of the disease, disorder, or condition, whereby the administering is performed through inhalation; and applying an applied electromagnetic energy to the subject, wherein the applied electromagnetic energy directly or indirectly activates the at least one photoactivatable pharmaceutical agent, when present, and wherein when the first plurality of energy-emitting particles is present, the first plurality of energy-emitting particles absorbs the applied energy and emits an emitted electromagnetic energy, wherein the emitted electromagnetic energy interacts directly with the region of the disease, disorder, or condition or activates the at least one photoactivatable pharmaceutical agent.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: February 7, 2023
    Assignees: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. Bourke, Jr., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Publication number: 20200368547
    Abstract: A method for treating a disease, disorder, or condition in a subject in need thereof, by administering either or both of (i) at least one photoactivatable pharmaceutical agent, or (ii) a first plurality of energy-emitting particles, into the subject in a region of the disease, disorder, or condition, whereby the administering is performed through inhalation; and applying an applied electromagnetic energy to the subject, wherein the applied electromagnetic energy directly or indirectly activates the at least one photoactivatable pharmaceutical agent, when present, and wherein when the first plurality of energy-emitting particles is present, the first plurality of energy-emitting particles absorbs the applied energy and emits an emitted electromagnetic energy, wherein the emitted electromagnetic energy interacts directly with the region of the disease, disorder, or condition or activates the at least one photoactivatable pharmaceutical agent.
    Type: Application
    Filed: April 28, 2020
    Publication date: November 26, 2020
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. BOURKE, JR., Harold WALDER, Zakaryae FATHI, Michael J. THERIEN, Mark W. DEWHIRST, Ian N. STANTON, Jennifer Ann AYRES, Diane Renee FELS, Joseph A. HERBERT
  • Patent number: 10709900
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact with least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: July 14, 2020
    Assignees: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. Bourke, Jr., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Publication number: 20190168015
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact witht least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Application
    Filed: January 18, 2019
    Publication date: June 6, 2019
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. BOURKE, JR., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Patent number: 10232190
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact with at least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: March 19, 2019
    Assignees: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. Bourke, Jr., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Patent number: 9907976
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact with at least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: March 6, 2018
    Assignees: IMMUNOLIGHT, LLC, DUKE UNIVERSITY
    Inventors: Frederic A. Bourke, Jr., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Publication number: 20170319868
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact with at least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 9, 2017
    Applicants: IMMUNOLIGHT, LLC., DUKE UNIVERSITY
    Inventors: Frederic A. Bourke, JR., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Publication number: 20140323946
    Abstract: A system and method for light stimulation within a medium. The system has a reduced-voltage x-ray source configured to generate x-rays from a peak applied cathode voltage at or below 105 kVp, and a plurality of energy-emitting particles in the medium which, upon radiation from the x-ray source, radiate at a first lower energy than the x-ray source to interact with at least one photoactivatable agent in the medium. The method introduces the plurality of energy-emitting particles into the medium, radiates the energy-emitting particles in the medium with x-rays generated from a peak applied cathode voltage at or below 105 kVp; and emits a lower energy than the x-ray source to interact with the medium or with at least one photoactivatable agent in the medium.
    Type: Application
    Filed: July 9, 2012
    Publication date: October 30, 2014
    Applicants: DUKE UNIVERSITY, IMMUNOLIGHT, LLC
    Inventors: Frederic A. Bourke, JR., Harold Walder, Zakaryae Fathi, Michael J. Therien, Mark W. Dewhirst, Ian N. Stanton, Jennifer Ann Ayres, Diane Renee Fels, Joseph A. Herbert
  • Patent number: 8618509
    Abstract: A system for energy upconversion and/or down conversion and a system for producing a photostimulated reaction in a medium. These systems include 1) a nanoparticle configured, upon exposure to a first wavelength ?1 of radiation, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1 and 2) a metallic structure disposed in relation to the nanoparticle. A physical characteristic of the metallic structure is set to a value where a surface plasmon resonance in the metallic structure resonates at a frequency which provides a spectral overlap with either the first wavelength ?1 or the second wavelength ?2, or with both ?1 and ?2. The system for producing a photostimulated reaction in a medium includes a receptor disposed in the medium in proximity to the nanoparticle which, upon activation by the second wavelength ?2, generates the photostimulated reaction.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 31, 2013
    Assignees: Immunolight, LLC, Duke University
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Zak Fathi, Jennifer Ann Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Patent number: 8389958
    Abstract: A system for energy upconversion and/or down conversion and a system for producing a photostimulated reaction in a medium. These systems include 1) a nanoparticle configured, upon exposure to a first wavelength ?1 of radiation, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1 and 2) a metallic structure disposed in relation to the nanoparticle. A physical characteristic of the metallic structure is set to a value where a surface plasmon resonance in the metallic structure resonates at a frequency which provides a spectral overlap with either the first wavelength ?1 or the second wavelength ?2, or with both ?1 and ?2. The system for producing a photostimulated reaction in a medium includes a receptor disposed in the medium in proximity to the nanoparticle which, upon activation by the second wavelength ?2, generates the photostimulated reaction.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 5, 2013
    Assignees: Duke University, Immunolight, LLC
    Inventors: Tuan Vo-Dinh, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, Jr., Zak Fathi, Jennifer Ann Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton