Patents by Inventor Jennifer Barnes

Jennifer Barnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080014667
    Abstract: A method of modifying the optical properties of a processed nitride semiconductor light-emitting device initially comprises disposing the processed nitride semiconductor light-emitting device in a vacuum chamber. One or more nitride semiconductor layers are then grown by molecular beam epitaxy thereby to modify the optical properties of the processed light-emitting device. Activated nitrogen, for example from a plasma source, is supplied to the vacuum chamber during growth of the nitride semiconductor layer(s). The use of activated nitrogen reduces the growth temperature required for the growth of the nitride semiconductor layer(s), as the need for thermal activation of a nitrogen species is eliminated. Moreover, use of a growth method such as, for example, plasma-assisted MBE to grow the nitride semiconductor layer(s) allows much more precise control of their thickness and composition.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Inventors: Stewart HOOPER, Matthias Kauer, Jonathan Heffernan, Joanna Alderman, Jennifer Barnes, Valerie Bousquet, Takeshi Kamikawa, Yoshiyuki Takahira
  • Publication number: 20060237740
    Abstract: A method of growing an AlGaN semiconductor layer structure by Molecular Beam Epitaxy comprises supplying ammonia, gallium and aluminium to a growth chamber thereby to grow a first (Al,Ga)N layer by MBE over a substrate disposed in the growth chamber. The first (Al,Ga)N layer has a non-zero aluminium mole fraction. Ammonia is supplied at a beam equivalent pressure of at least 1 10?4 mbar, gallium is supplied at a beam equivalent pressure of at least 1 10?8 mbar and aluminium is supplied at a beam equivalent pressure of at least 1 10?8 mbar during the growth step. Once the first (Al,Ga)N layer has been grown, varying the supply rate of gallium and/or aluminium enables a second (Al,Ga)N layer, having a different aluminium mole fraction from the first (Al,Ga)N layer to be grown by MBE over the first (Al,Ga)N layer. This process may be repeated to grown an (Al,Ga)N multilayer structure.
    Type: Application
    Filed: August 18, 2003
    Publication date: October 26, 2006
    Inventors: Valerie Bousquet, Stewart Hooper, Jennifer Barnes, Katherine Johnson, Jonathan Heffernan
  • Publication number: 20060128122
    Abstract: A method of MBE growth of a semiconductor layer structure comprises growing a first (Al,Ga)N layer (step 13) over a substrate at the first substrate temperature (T1) using ammonia as the nitrogen precursor. The substrate is then cooled (step 14) to a second-substrate temperature (T2) which is lower than the first substrate temperature. An (In,Ga)N quantum well structure is then grown (step 15) over the first (Al,Ga)N layer by MBE using ammonia as the nitrogen precursor. The supply of ammonia to the substrate is maintained continuously during the first growth step, the cooling step, and the second growth step. After completion of the growth of the (In,Ga)N quantum well structure, the substrate may be heated to a third temperature (T3) which is greater than the second substrate temperature (T2). A second (Al,Ga)N layer is then grown over the (In,Ga)N quantum well structure (step 17).
    Type: Application
    Filed: August 18, 2003
    Publication date: June 15, 2006
    Inventors: Valerie Bousquet, Stewart Hooper, Jennifer Barnes, Jonathan Heffernan