Patents by Inventor Jennifer Doudna

Jennifer Doudna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371062
    Abstract: The present disclosure provides CasY proteins, nucleic acids encoding the CasY proteins, and modified host cells comprising the CasY proteins and/or nucleic acids encoding same. CasY proteins are useful in a variety of applications, which are provided. The present disclosure provides CasY guide RNAs that bind to and provide sequence specificity to the CasY proteins, nucleic acids encoding the CasY guide RNAs, and modified host cells comprising the CasY guide RNAs and/or nucleic acids encoding same. CasY guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides methods of identifying a CRISPR RNA-guided endonuclease.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: June 28, 2022
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, David Burstein, Lucas Benjamin Harrington
  • Publication number: 20220153779
    Abstract: The present disclosure provides a method for chemoselective modification of a target molecule. A subject method includes contacting a target molecule comprising a thiol moiety with a biomolecule comprising a reactive moiety, wherein the reactive moiety is generated by reaction of a biomolecule comprising a phenol moiety or a catechol with an enzyme capable of oxidizing the phenol or the catechol moiety. The contacting is carried out under conditions sufficient for conjugation of the target molecule to the biomolecule, thereby producing a modified target molecule. The present disclosure provides compositions comprising a subject target molecule comprising a thiol moiety, and a biomolecule comprising a phenol moiety or a catechol moiety. The present disclosure provides kits for carrying out a subject method. The present disclosure also provides modified target molecules and methods for using same.
    Type: Application
    Filed: March 19, 2020
    Publication date: May 19, 2022
    Inventors: Matthew B. Francis, Marco Jackson Lobba, Johnathan Charles Maza, Alan M. Marmelstein, Jennifer A. Doudna, Christof Fellmann, Casey S. Mogilevsky
  • Patent number: 11332761
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 17, 2022
    Assignees: The Regenis of Wie University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220127645
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 28, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11312953
    Abstract: This disclosure provides for compositions and methods for the use of nucleic acid-targeting nucleic acids and complexes thereof.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 26, 2022
    Assignee: Caribou Biosciences, Inc.
    Inventors: Andrew Paul May, Rachel E. Haurwitz, Jennifer A. Doudna, James M. Berger, Matthew Merrill Carter, Paul Daniel Donohoue
  • Publication number: 20220119847
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 21, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220119845
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 21, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220119846
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 21, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220119848
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 21, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220112521
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 14, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11293034
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: April 5, 2022
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11274318
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 15, 2022
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220073952
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: October 29, 2021
    Publication date: March 10, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220049276
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: September 21, 2021
    Publication date: February 17, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11242543
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 8, 2022
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220025353
    Abstract: The present disclosure provides devices and methods for delivering a biomolecule into a cell. A delivery device of the present disclosure includes a first reservoir, a second reservoir, a porous membrane comprising a nanopore, and two or more electrodes configured to generate an electric field across the porous membrane for delivery of a biomolecule present in the second reservoir through the nanopore of the porous membrane and into a cell present in the first reservoir.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 27, 2022
    Inventors: Jennifer A. Doudna, Yuhong Cao, Enbo Ma, Peidong Yang
  • Publication number: 20220025407
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 27, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220010338
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 13, 2022
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20210403888
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 30, 2021
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch
  • Patent number: 11208638
    Abstract: The present disclosure provides a Cas9 heterodimer, as well as nucleic acids encoding the Cas9 heterodimer, and host cells comprising the nucleic acids. The present disclosure provides a system that includes a Cas9 heterodimer of the present disclosure and at least one of: a Cas9 guide RNA, and a dimerizing agent. A Cas9 heterodimer of the present disclosure is useful in a wide variety of applications, which are also provided.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: December 28, 2021
    Assignee: The Regents of the University of California
    Inventors: Samuel H. Sternberg, Jennifer A. Doudna, Addison V. Wright