Patents by Inventor Jennifer G. Abelin

Jennifer G. Abelin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220387567
    Abstract: Compositions that include anti-cancer, anti-tumor, and anti-microbial infection peptides are provided. In some embodiments, the compositions include 1-10 or more synthetic peptides that are between 8 and 50 amino acids long and include an amino acid sequence as disclosed herein.
    Type: Application
    Filed: March 23, 2020
    Publication date: December 8, 2022
    Applicants: University of Virginia Patent Foundation, The University of Birmingham, The General Hospital Corporation
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Keira Mahoney, Jennifer G. Abelin, Mohammad Ovais Azizzanjani, Paisley Trantham Myers, Stacy Alyse Malaker, Andrew Norris, Jennifer Hitchcock, Xi Peng, Negin Ghafourian, Mark Cobbold, Sarah Penny, Nico Buettner, James M. Heather
  • Publication number: 20220265791
    Abstract: Provided are compositions that include one or more synthetic target peptides, wherein each synthetic target peptide is about or at least 8-50 amino acids long; and has an amino acid sequence as set forth in Table 2 and/or Table 3. Also provided are in vitro populations of dendritic cells that include the disclosed compositions, in vitro population of CD8+ T cells capable of being activated upon being brought into contact with the disclosed populations of dendritic cells, antibodies or antibody-like molecules that specifically binds to a complex of an MHC class I molecule and a peptide having an amino acid sequence as set forth in Table 2 and/or Table 3, methods for treating and/or preventing cancers by administering a therapeutically effective dose of a composition that includes at least one target peptide having an amino acid sequence as set forth in Table 2 and/or Table 3.
    Type: Application
    Filed: July 21, 2020
    Publication date: August 25, 2022
    Applicants: University of Virginia Patent Foundation, The University of Birmingham, The General Hospital Corporation
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Keira Mahoney, Jennifer G. Abelin, Mohammad Ovais Azizzanjani, Paisley Trantham Myers, Stacy Alyse Malaker, Andrew Norris, Jennifer Hitchcock, Xi Peng, Negin Ghafourian, Mark Cobbold, Sarah Penny, Nico Buettner, James M. Heather
  • Publication number: 20220211828
    Abstract: A set of target peptides are presented by HLA A*0201 on the surface of ovarian cancer cells. They are envisioned to among other things (a) stimulate an immune response to the proliferative disease, e.g., ovarian cancer, (b) function as immunotherapeutics in adoptive T-cell therapy or as a vaccine, (c) facilitate antibody recognition of tumor boundaries in surgical pathology samples, (d) act as biomarkers for early detection and/or diagnosis of the disease, and (e) act as targets in the generation antibody-like molecules which recognize the target-peptide/MHC complex.
    Type: Application
    Filed: February 23, 2021
    Publication date: July 7, 2022
    Applicants: University of Virginia Patent Foundation, The Board of Regents of the University of Oklahoma
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Jennifer G. Abelin, William H. Hildebrand, Andrea M. Patterson
  • Publication number: 20210154279
    Abstract: A set of target peptides are presented by HLA A*0201, B*0301, B*0702 and B*2705 on the surface of disease cells. They are envisioned to, among other things, stimulate an immune response to the proliferative disease, e.g., colorectal cancer, to function as immunotherapeutics in adoptive T cell therapy or as a vaccine, facilitate antibody recognition of tumor boundaries in surgical pathology samples, act as biomarkers for early detection and/or diagnosis of the disease, and/or act as targets in the generation antibody-like molecules which recognize the target-peptide/MHC complex.
    Type: Application
    Filed: June 15, 2020
    Publication date: May 27, 2021
    Applicants: The University of Birmingham
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Jennifer G. Abelin, Mark Cobbold, Sarah Penny
  • Patent number: 10682399
    Abstract: A set of target peptides are presented by HLA A*0201, B*0301, B*0702 and B*2705 on the surface of disease cells. They are envisioned to, among other things, stimulate an immune response to the proliferative disease, e.g., colorectal cancer, to function as immunotherapeutics in adoptive T cell therapy or as a vaccine, facilitate antibody recognition of tumor boundaries in surgical pathology samples, act as biomarkers for early detection and/or diagnosis of the disease, and/or act as targets in the generation antibody-like molecules which recognize the target-peptide/MHC complex.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: June 16, 2020
    Assignees: The University of Birmingham, University of Virginia Patent Foundation
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Jennifer G. Abelin, Mark Cobbold, Sarah Amy Penny
  • Publication number: 20190346442
    Abstract: Adaptive immune responses rely on the ability of cytotoxic T cells to identify and eliminate cells displaying disease-specific antigens on human leukocyte antigen (HLA) class I molecules. Investigations into antigen processing and display have immense implications in human health, disease and therapy. To extend understanding of the rules governing antigen processing and presentation, immunopurified peptides from B cells, each expressing a single HLA class I allele, were profiled using accurate mass, high-resolution liquid chromatography-mass spectrometry (LC-MS/MS). A resource dataset containing thousands of peptides bound to 28 distinct class I HLA-A, -B, and -C alleles was generated by implementing a novel allele-specific database search strategy. Applicants discovered new binding motifs, established the role of gene expression in peptide presentation and improved prediction of HLA-peptide binding by using these data to train machine-learning models.
    Type: Application
    Filed: April 18, 2017
    Publication date: November 14, 2019
    Inventors: Steven A. Carr, Nir Hacohen, Catherine J. Wu, Jennifer G. Abelin, Siranush Sarkizova, Derin B. Keskin, Karl R. Clauser, Michael S. Rooney
  • Publication number: 20160000893
    Abstract: A set of target peptides are presented by HLA A*0201 on the surface of ovarian cancer cells. They are envisioned to among other things (a) stimulate an immune response to the proliferative disease, e.g., ovarian cancer, (b) function as immunotherapeutics in adoptive T-cell therapy or as a vaccine, (c) facilitate antibody recognition of tumor boundaries in surgical pathology samples, (d) act as biomarkers for early detection and/or diagnosis of the disease, and (e) act as targets in the generation antibody-like molecules which recognize the target-peptide/MHC complex.
    Type: Application
    Filed: December 13, 2013
    Publication date: January 7, 2016
    Applicants: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, THE BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Jennifer G. Abelin, William H. Hildebrand
  • Publication number: 20150328297
    Abstract: A set of target peptides are presented by HLA A*0201, B*0301, B*0702 and B*2705 on the surface of disease cells. They are envisioned to, among other things, stimulate an immune response to the proliferative disease, e.g., colorectal cancer, to function as immunotherapeutics in adoptive T cell therapy or as a vaccine, facilitate antibody recognition of tumor boundaries in surgical pathology samples, act as biomarkers for early detection and/or diagnosis of the disease, and/or act as targets in the generation antibody-like molecules which recognize the target-peptide/MHC complex.
    Type: Application
    Filed: September 5, 2013
    Publication date: November 19, 2015
    Inventors: Donald F. Hunt, Jeffrey Shabanowitz, Jennifer G. Abelin, Mark Cobbold, Sarah Amy Penny