Patents by Inventor Jennifer L. Bancroft

Jennifer L. Bancroft has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9522860
    Abstract: A method and system are disclosed for managing hydrate formation in a process that converts a hydrocarbon stream into C2 unsaturates, such as ethylene and/or acetylenes. The method includes adding a hydrate inhibitor to a hydrocarbon stream to lower the hydrate formation point of the mixture stream from an initial hydrate formation point (HI) of the hydrocarbon stream to a depressed hydrate formation point (HD) of the mixture stream. Then, the mixture stream is depressurized to adiabatically cool the stream to a temperature (T), wherein the HD<T<HI. Then, at least a portion of the mixture stream is vaporized and the vaporized portion of the mixture stream is separated from the unvaporized portion of the mixture stream. Once separated, at least a portion of the vaporized portion is converted into product, such as ethylene and/or acetylene.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: December 20, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William R. White, James L. Kendall, Jennifer L. Bancroft, Russell Dean Sellen
  • Patent number: 9296955
    Abstract: A method and system are disclosed for co-production of olefins and electric power. The method includes determining a separation level, separating a hydrocarbon feed into a light fraction stream and a heavy fraction stream based on the determined separation level; generating electric power from the heavy fraction stream; and cracking the light fraction stream in a pyrolysis unit to produce an effluent comprising olefins. The separation level may be based on olefin production requirements and electric power requirements or specific split of the hydrocarbon feed to be utilized for power generation and olefin production.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 29, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert D. Strack, Jennifer L. Bancroft, Paul Michael Edwards, Gregory E. Yeo
  • Patent number: 8882991
    Abstract: In one aspect, the invention includes in a process for cracking a hydrocarbon feedstock comprising: a) feeding a hydrocarbon feedstock containing at least 1 wt % of resid components having boiling points of at least 500° C. to a furnace convection section to heat the feedstock; b) flashing the heated feedstock in a first flash separation vessel to create a first overhead stream and a first bottoms liquid stream; c) hydrogenating at least a portion of the first bottoms liquid stream to create a hydrogenated bottoms stream; d) flashing the hydrogenated bottoms stream in a second flash separation vessel to create a second overhead stream and a second bottoms liquid stream; e) cracking the first overhead stream and the second overhead stream in a cracking furnace to produce a pyrolysis effluent stream. In other embodiments, the process further comprises heating the hydrocarbon feedstock in step a) to a temperature within a range of from 315° C. to 705° C.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: November 11, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jennifer L. Bancroft, Paul F. Keusenkothen, Robert D. Strack
  • Publication number: 20140296604
    Abstract: A method and system are disclosed for managing hydrate formation in a process that converts a hydrocarbon stream into C2 unsaturates, such as ethylene and/or acetylenes. The method includes adding a hydrate inhibitor to a hydrocarbon stream to lower the hydrate formation point of the mixture stream from an initial hydrate formation point (HI) of the hydrocarbon stream to a depressed hydrate formation point (HD) of the mixture stream. Then, the mixture stream is depressurized to adiabatically cool the stream to a temperature (T), wherein the HD<T<HI. Then, at least a portion of the mixture stream is vaporized and the vaporized portion of the mixture stream is separated from the unvaporized portion of the mixture stream. Once separated, at least a portion of the vaporized portion is converted into product, such as ethylene and/or acetylene.
    Type: Application
    Filed: March 6, 2012
    Publication date: October 2, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: William R. White, James L. Kendall, Jennifer L. Bancroft, Russell Dean Sellen
  • Patent number: 8207387
    Abstract: Provided is a method of producing polypropylene comprising contacting an oxygenate stream with a molecular sieve to form an olefin stream comprising propane, propylene and dimethylether; introducing the olefin stream into a propylene rectification tower possessing from less than 200 theoretical stages; withdrawing from the propylene rectification tower a bottom stream comprising dimethylether, a sidestream comprising propane, and an overhead stream comprising propane and propylene; introducing the overhead to a condenser to accumulate a propylene-rich stream; passing the propylene-rich stream to a splitter to produce (i) a first propylene stream that is introduced into a polypropylene reactor to contact a polyolefin catalyst, and (ii) a second propylene stream that is re-introduced into the rectification tower, the first and second propylene streams introduced at a desirable ratio; and recirculating the dimethylether stream to contact the molecular sieve.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: June 26, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Gerald G. McGlamery, Jr., Lawrence C. Smith, Jennifer L. Bancroft
  • Publication number: 20120067058
    Abstract: A method and system are disclosed for co-production of olefins and electric power. The method includes determining a separation level, separating a hydrocarbon feed into a light fraction stream and a heavy fraction stream based on the determined separation level; generating electric power from the heavy fraction stream; and cracking the light fraction stream in a pyrolysis unit to produce an effluent comprising olefins. The separation level may be based on olefin production requirements and electric power requirements or specific split of the hydrocarbon feed to be utilized for power generation and olefin production.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 22, 2012
    Inventors: Robert D. Strack, Jennifer L. Bancroft, Paul Michael Edwards, Gregory E. Yeo
  • Publication number: 20110042269
    Abstract: In one aspect, the invention includes in a process for cracking a hydrocarbon feedstock comprising: a) feeding a hydrocarbon feedstock containing at least 1 wt % of resid components having boiling points of at least 500° C. to a furnace convection section to heat the feedstock; b) flashing the heated feedstock in a first flash separation vessel to create a first overhead stream and a first bottoms liquid stream; c) hydrogenating at least a portion of the first bottoms liquid stream to create a hydrogenated bottoms stream; d) flashing the hydrogenated bottoms stream in a second flash separation vessel to create a second overhead stream and a second bottoms liquid stream; e) cracking the first overhead stream and the second overhead stream in a cracking furnace to produce a pyrolysis effluent stream. In other embodiments, the process further comprises heating the hydrocarbon feedstock in step a) to a temperature within a range of from 315° C. to 705° C.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Inventors: Keith H. Kuechler, Jennifer L. Bancroft, Paul F. Keusenkothen, Robert D. Strack
  • Publication number: 20100317908
    Abstract: Provided is a method of producing polypropylene comprising contacting an oxygenate stream with a molecular sieve to form an olefin stream comprising propane, propylene and dimethylether; introducing the olefin stream into a propylene rectification tower possessing from less than 200 theoretical stages; withdrawing from the propylene rectification tower a bottom stream comprising dimethylether, a sidestream comprising propane, and an overhead stream comprising propane and propylene; introducing the overhead to a condenser to accumulate a propylene-rich stream; passing the propylene-rich stream to a splitter to produce (i) a first propylene stream that is introduced into a polypropylene reactor to contact a polyolefin catalyst, and (ii) a second propylene stream that is re-introduced into the rectification tower, the first and second propylene streams introduced at a desirable ratio; and recirculating the dimethylether stream to contact the molecular sieve.
    Type: Application
    Filed: May 3, 2010
    Publication date: December 16, 2010
    Inventors: Gerald G. McGlamery, JR., Lawrence C. Smith, Jennifer L. Bancroft
  • Patent number: 7767170
    Abstract: A process is provided for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, optionally further heating the mixture, flashing the mixture within a flash/separation vessel to form a vapor phase and a liquid phase, partially condensing the vapor phase by contacting with a condenser within the vessel, to condense at least some coke precursors within the vapor while providing condensates which add to the liquid phase, removing the vapor phase of reduced coke precursors content as overhead and the liquid phase as bottoms, heating the vapor phase, cracking the vapor phase in a radiant section of a pyrolysis furnace to produce an effluent comprising olefins, and quenching the effluent and recovering cracked product therefrom. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George Stephens, Jennifer L. Bancroft, John R. Messinger
  • Patent number: 7553460
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: June 30, 2009
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, Subramanian Annamalai, James N. McCoy, Paul F. Keusenkothen, George Stephens, John R. Messinger, James Mitchell Frye, Nick G. Vidonic, George J. Balinsky
  • Patent number: 7419584
    Abstract: A process is provided for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, optionally further heating the mixture, flashing the mixture within a flash/separation vessel to form a vapor phase and a liquid phase, partially condensing the vapor phase by contacting with a condenser within the vessel, to condense at least some coke precursors within the vapor while providing condensates which add to the liquid phase, removing the vapor phase of reduced coke precursors content as overhead and the liquid phase as bottoms, heating the vapor phase, cracking the vapor phase in a radiant section of a pyrolysis furnace to produce an effluent comprising olefins, and quenching the effluent and recovering cracked product therefrom. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George Stephens, Jennifer L. Bancroft, John R. Messinger
  • Patent number: 7247765
    Abstract: A process is provided for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, optionally further heating the mixture, flashing the mixture within a flash/separation vessel to form a vapor phase and a liquid phase, partially condensing the vapor phase by contacting with a condenser within the vessel, to condense at least some coke precursors within the vapor while providing condensates which add to the liquid phase, removing the vapor phase of reduced coke precursors content as overhead and the liquid phase as bottoms, heating the vapor phase, cracking the vapor phase in a radiant section of a pyrolysis furnace to produce an effluent comprising olefins, and quenching the effluent and recovering cracked product therefrom. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George Stephens, Jennifer L. Bancroft, John R. Messinger
  • Patent number: 7193123
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. DiNicolantonio, Subramanian Annamalai, James N. McCoy, Paul F. Keusenkothen, George Stephens, John R. Messinger, James Mitchell Frye, Nick G. Vidonic, George J. Balinsky
  • Patent number: 7097758
    Abstract: A process to increase the non-volatile removal efficiency in a flash drum in the steam cracking system. The gas flow from the convection section is converted from mist flow to annular flow before entering the flash drum to increase the removal efficiency. The conversion of gas flow from mist flow to annular flow is accomplished by subjecting the gas flow first to at least one expander and then to bends of various degrees and force the flow to change directions at least once. The change of gas flow from mist to annular helps coalesce fine liquid droplets and thus being removed from the vapor phase.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: August 29, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, George Stephens
  • Publication number: 20040004028
    Abstract: A process to increase the non-volatile removal efficiency in a flash drum in the steam cracking system. The gas flow from the convection section is converted from mist flow to annular flow before entering the flash drum to increase the removal efficiency. The conversion of gas flow from mist flow to annular flow is accomplished by subjecting the gas flow first to at least one expander and then to bends of various degrees and force the flow to change directions at least once. The change of gas flow from mist to annular helps coalesce fine liquid droplets and thus being removed from the vapor phase.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, George Stephens