Patents by Inventor Jennifer L. Belelie

Jennifer L. Belelie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11772406
    Abstract: A print feedstock has a base material and a marker material, the base material and the marker material having different physical properties. A system to validate objects includes at least one printer to print feedstock onto an object, the feedstock comprising a base material and a marker material, the base material and a marker material having different properties, a device to create a unique identifier for the object based upon a pattern of the feedstock, and a store in which the unique identifier can be stored.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: October 3, 2023
    Assignee: XEROX CORPORATION
    Inventors: Warren Jackson, Janos Veres, Yujie Zhu, Jennifer L. Belelie, Robert A. Street, Ping Mei, Kent Evans
  • Publication number: 20220234378
    Abstract: A print feedstock has a base material and a marker material, the base material and the marker material having different physical properties. A system to validate objects includes at least one printer to print feedstock onto an object, the feedstock comprising a base material and a marker material, the base material and a marker material having different properties, a device to create a unique identifier for the object based upon a pattern of the feedstock, and a store in which the unique identifier can be stored.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Inventors: WARREN JACKSON, JANOS VERES, YUJIE ZHU, JENNIFER L. BELELIE, ROBERT A. STREET, PING MEI, KENT EVANS
  • Publication number: 20220162460
    Abstract: Aqueous inkjet ink compositions are provided. In an embodiment, such an aqueous inkjet ink composition comprises water; a high viscosity latex; a colorant; and optionally, a wax. The high viscosity latex comprises water and resin particles comprising a polymerization product of a monomer, an acidic monomer, a hydrophilic monomer, a difunctional monomer, and a reactive surfactant. The high viscosity latex is characterized by a viscosity in a range of from 10 cP to 100 cP as measured at a solid content of 30% and at room temperature. The aqueous inkjet ink composition is free of a water-soluble binder. Methods of forming and using the aqueous inkjet ink compositions are also provided.
    Type: Application
    Filed: November 24, 2020
    Publication date: May 26, 2022
    Inventors: Sepehr M. Tehrani, Syed Mohsin Ali, Carlos Dondon, Biby Esther Abraham, C. Geoffrey Allen, Mihaela Maria Birau, Jennifer L. Belelie
  • Publication number: 20220162462
    Abstract: Aqueous inkjet ink compositions are provided. In an embodiment, such an aqueous inkjet ink composition comprises water; resin particles; a colorant; and optionally, a wax. The resin particles comprise a polymerization product of reactants comprising a monomer, an acidic monomer, a hydrophilic monomer, a difunctional monomer, and a reactive surfactant. The acidic monomer, the hydrophilic monomer, and the difunctional monomer may be present at an amount in a range of from about 10 weight % to about 30 weight % in the resin particles. Methods of forming and using the aqueous inkjet ink compositions are also provided.
    Type: Application
    Filed: April 14, 2021
    Publication date: May 26, 2022
    Inventors: Sepehr Tehrani, Syed Mohsin Ali, Carlos Dondon, Biby Esther Abraham, C. Geoffrey Allen, Mihaela Maria Birau, Jennifer L. Belelie
  • Publication number: 20220063187
    Abstract: When constructing parts by additive manufacturing, it is sometimes necessary to include a support structure during part fabrication, wherein the support structure is subsequently removable. Polymer filaments suitable for forming support structures during additive manufacturing may comprise a polymeric material, and a gas-forming substance admixed with the polymeric material in an effective amount to undergo effervescence when the polymeric material is in contact with at least one fluid comprising a liquid phase. Additive manufacturing processes may comprise forming a supported part by depositing a build material and a removable support (e.g., upon a print bed) formed from such polymer filaments, wherein at least a portion of the build material is deposited upon the removable support. Exposure of the gas-forming substance to a fluid in which the polymeric material dissolves or degrades may promote gas formation to facilitate elimination of the removable support by effervescence.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 3, 2022
    Applicant: Xerox Corporation
    Inventors: Naveen Chopra, Benjamin Knapik, Syed Mohsin Ali, Jennifer L. Belelie
  • Patent number: 11143958
    Abstract: A process including providing a substantially flat printed image on a substrate; disposing a curable gellant composition onto the printed image in registration with the printed image, successively depositing additional amounts of the gellant composition to create a raised image in registration with the printed image; and curing the deposited raised image. A process including providing a printed image on a substrate; disposing a curable non-gellant composition onto the printed image in registration with the printed image; and disposing a curable gellant composition onto the printed image in registration with the printed image; to create a raised image in registration with the printed image; and curing the deposited raised image. An ultraviolet curable phase change gellant composition including a radiation curable monomer or prepolymer, a photoinitiator, a silicone polymer or pre-polymer, and a gellant.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 12, 2021
    Assignee: Xerox Corporation
    Inventors: Jennifer L. Belelie, Michelle N. Chrétien, Paul J. McConville, Jason O'Neil, Barkev Keoshkerian, Anthony S. Condello
  • Patent number: 10828910
    Abstract: The present teachings include a process, system and article for forming a printed image on a textile. In some embodiments, the process includes coating the textile with a layer of polydiallyldimethyl ammonium chloride cationic polymer and coating the textile with the layer of polydiallyldimethyl ammonium chloride cationic polymer with a layer of poly-4-styrene sulfonate anionic polymer. The process can further include applying an ink composition to the textile having the layer of polydiallyldimethyl ammonium chloride cationic polymer layer and the layer of poly-4-styrene sulfonate anionic polymer, forming an image.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 10, 2020
    Assignees: Xerox Corporation, Palo Alto Research Center
    Inventors: Naveen Chopra, Paul J. McConville, Jennifer L. Belelie, Anthony S. Condello, Robert A. Street, Warren Jackson
  • Patent number: 10696857
    Abstract: An ink composition including at least one curable monomer; at least one gellant; an optional photoinitiator; and an optional colorant; wherein the ink composition has a viscosity of less than 106 centipoise at a temperature of from about 20° C. to about 40° C.; and wherein the ink composition has the characteristics of being both ink jettable and pinnable at a temperature of from about 20° C. to about 40° C.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: June 30, 2020
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Michelle N. Chrétien, Jennifer L. Belelie
  • Patent number: 10520840
    Abstract: A cold pressure fix toner composition includes at least one C16 to C80 crystalline organic material having a melting point in a range from about 30° C. to about 130° C. and at least one C16 to C80 amorphous organic material having a Tg of from about ?30° C. to about 70° C. A method of cold pressure fix toner application includes providing the cold pressure fix toner composition, disposing the cold pressure fix toner composition on a substrate and applying pressure to the disposed composition on the substrate under cold pressure fixing conditions. The cold pressure fix toner compositions can be formed into latexes.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: December 31, 2019
    Assignee: XEROX CORPORATION
    Inventors: Richard Philip Nelson Veregin, Nan-Xing Hu, Guerino G. Sacripante, Karen A. Moffat, Jennifer L. Belelie
  • Patent number: 10442231
    Abstract: The present teachings include a process, system and article for forming a printed image on a textile. The process includes coating the solution of an orthosilicate to form a silica network on the textile. The process includes applying an ink composition to the textile having the silica network on the textile, forming an image.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: October 15, 2019
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Paul J. McConville, Jennifer L. Belelie, Anthony S. Condello, Robert A. Street, Warren Jackson
  • Publication number: 20190310550
    Abstract: A process including providing a substantially flat printed image on a substrate; disposing a curable gellant composition onto the printed image in registration with the printed image, successively depositing additional amounts of the gellant composition to create a raised image in registration with the printed image; and curing the deposited raised image. A process including providing a printed image on a substrate; disposing a curable non-gellant composition onto the printed image in registration with the printed image; and disposing a curable gellant composition onto the printed image in registration with the printed image; to create a raised image in registration with the printed image; and curing the deposited raised image. An ultraviolet curable phase change gellant composition including a radiation curable monomer or prepolymer, a photoinitiator, a silicone polymer or pre-polymer, and a gellant.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: Jennifer L. Belelie, Michelle N. Chrétien, Paul J. McConville, Jason O'Neil, Barkev Keoshkerian, Anthony S. Condello
  • Publication number: 20190291490
    Abstract: The present teachings include a process, system and article for forming a printed image on a textile. The process includes coating the solution of an orthosilicate to form a silica network on the textile. The process includes applying an ink composition to the textile having the silica network on the textile, forming an image.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 26, 2019
    Inventors: Naveen Chopra, Paul J. McConville, Jennifer L. Belelie, Anthony S. Condello, Robert A. Street, Warren Jackson
  • Publication number: 20190284757
    Abstract: The present teachings include a process, system and article for forming a printed image on a textile. In some embodiments, the process includes coating the textile with a layer of polydiallyldimethyl ammonium chloride cationic polymer and coating the textile with the layer of polydiallyldimethyl ammonium chloride cationic polymer with a layer of poly-4-styrene sulfonate anionic polymer. The process can further include applying an ink composition to the textile having the layer of polydiallyldimethyl ammonium chloride cationic polymer layer and the layer of poly-4-styrene sulfonate anionic polymer, forming an image.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Naveen Chopra, Paul J. McConville, Jennifer L. Belelie, Anthony S. Condello, Robert A. Street, Warren Jackson
  • Publication number: 20190185694
    Abstract: An ink composition including at least one curable monomer; at least one gellant; an optional photoinitiator; and an optional colorant; wherein the ink composition has a viscosity of less than 106 centipoise at a temperature of from about 20° C. to about 40° C.; and wherein the ink composition has the characteristics of being both ink jettable and pinnable at a temperature of from about 20° C. to about 40° C.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Inventors: Naveen Chopra, Michelle N. Chrétien, Jennifer L. Belelie
  • Publication number: 20180143548
    Abstract: A cold pressure fix toner composition includes at least one C16 to C80 crystalline organic material having a melting point in a range from about 30° C. to about 130° C. and at least one C16 to C80 amorphous organic material having a Tg of from about ?30° C. to about 70° C. A method of cold pressure fix toner application includes providing the cold pressure fix toner composition, disposing the cold pressure fix toner composition on a substrate and applying pressure to the disposed composition on the substrate under cold pressure fixing conditions. The cold pressure fix toner compositions can be formed into latexes.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Inventors: Richard Philip Nelson Veregin, Nan-Xing Hu, Guerino G. Sacripante, Karen A. Moffat, Jennifer L. Belelie
  • Patent number: 9938422
    Abstract: A phase change ink composition suitable for high speed ink jet printing, including printing on coated paper substrates. In embodiments, the phase change ink composition comprises both a crystalline compound and an amorphous compound, and optionally, a colorant, which provides for a robust ink. The crystalline compound is an amide and the amorphous compound is an ester of tartaric acid.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: April 10, 2018
    Assignee: XEROX CORPORATION
    Inventors: Kentaro Morimitsu, Jennifer L. Belelie, Naveen Chopra, Gabriel Iftime, Peter G. Odell
  • Patent number: 9910373
    Abstract: A cold pressure fix toner composition includes at least one C16 to C80 crystalline organic material having a melting point in a range from about 30° C. to about 130° C. and at least one C16 to C80 amorphous organic material having a Tg of from about ?30° C. to about 70° C. A method of cold pressure fix toner application includes providing the cold pressure fix toner composition, disposing the cold pressure fix toner composition on a substrate and applying pressure to the disposed composition on the substrate under cold pressure fixing conditions. The cold pressure fix toner compositions can be formed into latexes.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: March 6, 2018
    Assignee: XEROX CORPORATION
    Inventors: Richard Philip Nelson Veregin, Nan-Xing Hu, Guerino G. Sacripante, Karen A. Moffat, Jennifer L. Belelie
  • Publication number: 20180044545
    Abstract: The present disclosure provides a photocurable ink comprising a radiation curable material selected from the group consisting of a curable monomer, a curable oligomer, and mixtures thereof; a photoinitiator; and a surfactant, which is suitable for use in an indirect printing method. The present disclosure also provides a method of printing using a photocurable ink.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Inventors: Michelle N. Chrétien, Jennifer L. Belelie, Naveen Chopra, Barkev Keoshkerian
  • Patent number: 9849707
    Abstract: An improved apparatus and method for forming images comprising Braille, raised print, regular print, or a combination is described. The architecture for the printing of Braille dots using marking material such as UV gel ink. The UV gel ink is deposited on a drum that has an array of closely packed raised features like mesas that are cup-shaped. The mesas on drum are filled with the UV gel ink and transferred to paper or another substrate. Partial curing can occur on the drum and the dots can be fully cured after transfer to the substrate. The mesas are shaped so that the dots take on a final shape consistent with usual Braille features.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: December 26, 2017
    Assignee: Xerox Corporation
    Inventors: Naveen Chopra, Christopher A. Wagner, Michelle N. Chrétien, Jennifer L. Belelie, Barkev Keoshkerian
  • Patent number: 9782771
    Abstract: Provided is a method of patterning a substrate. The method includes depositing, in a first predetermined pattern, hydrophobic material on a first surface of a hydrophilic substrate. The method includes permeating the hydrophobic material through a thickness of the substrate. The method includes exposing the hydrophobic material to UV-light and sufficiently solidifying the permeated hydrophobic material. The sufficiently solidified hydrophobic material forms a liquid-impervious barrier that separates the substrate into at least one discrete region.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: October 10, 2017
    Assignee: XEROX CORPORATION
    Inventors: Sarah J. Vella, Jennifer L. Belelie, Barkev Keoshkerian, James D. Mayo, Brynn Dooley