Patents by Inventor Jennifer Rhude

Jennifer Rhude has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969599
    Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 30, 2024
    Assignee: Pacesetter, Inc.
    Inventor: Jennifer Rhude
  • Patent number: 11745018
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 5, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Publication number: 20230103329
    Abstract: Methods and devices herein are provided for managing atrial (A) pacing in connection with premature atrial contracts (PAC). The methods and devices obtain an atrial pace-on-PAC (APAC) interval and cardiac activity (CA) signals. The methods and devices are configured to: i) during a first cardiac beat; following a ventricular paced (VP) or ventricular sensed (VS) event, activate a timer for a post ventricular-atrial refractory period (PVARP) interval; and determine whether a first atrial refractory (AR) event occurs during the PVARP interval; ii) during a second cardiac beat; in response to the detecting that the first AR event occurred, initiate an APAC interval; during the APAC interval for the second cardiac beat, determine whether a second AR event occurs; and update a count of APAC events when the second AR event occurs; and iii) repeat i) and ii) for multiple cardiac beats, to track the count of APAC events.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: Jordan Ireland Vance, Joy Catherine Wong, Jennifer Rhude
  • Patent number: 11547857
    Abstract: Methods and devices herein are provided for managing atrial (A) pacing in connection with premature atrial contracts (PAC). The methods and devices obtain an atrial pace-on-PAC (APAC) interval and cardiac activity (CA) signals. The methods and devices are configured to: i) during a first cardiac beat; following a ventricular paced (VP) or ventricular sensed (VS) event, activate a timer for a post ventricular-atrial refractory period (PVARP) interval; and determine whether a first atrial refractory (AR) event occurs during the PVARP interval; ii) during a second cardiac beat; in response to the detecting that the first AR event occurred, initiate an APAC interval; during the APAC interval for the second cardiac beat, determine whether a second AR event occurs; and update a count of APAC events when the second AR event occurs; and iii) repeat i) and ii) for multiple cardiac beats, to track the count of APAC events.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 10, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Jordan Ireland Vance, Joy Catherine Wong, Jennifer Rhude
  • Publication number: 20220305267
    Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventor: Jennifer Rhude
  • Publication number: 20220233864
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Application
    Filed: February 1, 2022
    Publication date: July 28, 2022
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Patent number: 11383089
    Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 12, 2022
    Assignee: Pacesetter, Inc.
    Inventor: Jennifer Rhude
  • Publication number: 20220143405
    Abstract: Methods and devices herein are provided for managing atrial (A) pacing in connection with premature atrial contracts (PAC). The methods and devices obtain an atrial pace-on-PAC (APAC) interval and cardiac activity (CA) signals. The methods and devices are configured to: i) during a first cardiac beat; following a ventricular paced (VP) or ventricular sensed (VS) event, activate a timer for a post ventricular-atrial refractory period (PVARP) interval; and determine whether a first atrial refractory (AR) event occurs during the PVARP interval; ii) during a second cardiac beat; in response to the detecting that the first AR event occurred, initiate an APAC interval; during the APAC interval for the second cardiac beat, determine whether a second AR event occurs; and update a count of APAC events when the second AR event occurs; and iii) repeat i) and ii) for multiple cardiac beats, to track the count of APAC events.
    Type: Application
    Filed: August 6, 2021
    Publication date: May 12, 2022
    Inventors: Jordan Ireland Vance, Joy Catherine Wong, Jennifer Rhude
  • Patent number: 11273312
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 15, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Patent number: 10967189
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding efficacy score was determined, if the efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 6, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Patent number: 10966650
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity is provided. The method and systems are under control of one or more processors configured with specific executable instructions. The method and systems obtain a far field cardiac activity (CA) signal that includes a series of beats, the CA signal including paced events. The method and systems identify the paced events in the CA signals. The method and systems determine a score based on an amount of paced events and adjust at least one parameter of an atrial fibrillation (AF) detection process based on the score.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 6, 2021
    Assignee: PACESETTER, INC.
    Inventors: Fujian Qu, Stuart Rosenberg, Xing Pei, Carin Folman, Jennifer Rhude
  • Publication number: 20200077910
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity is provided. The method and systems are under control of one or more processors configured with specific executable instructions. The method and systems obtain a far field cardiac activity (CA) signal that includes a series of beats, the CA signal including paced events. The method and systems identify the paced events in the CA signals. The method and systems determine a score based on an amount of paced events and adjust at least one parameter of an atrial fibrillation (AF) detection process based on the score.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Fujian Qu, Stuart Rosenberg, Xing Pei, Carin Folman, Jennifer Rhude
  • Publication number: 20190329038
    Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.
    Type: Application
    Filed: April 26, 2018
    Publication date: October 31, 2019
    Inventor: Jennifer Rhude
  • Patent number: 10322290
    Abstract: The present disclosure provides systems and methods for integrating cardiac resynchronization therapy (CRT) and temporary induced dyssynchrony (TID) therapy. An implantable cardiac device includes one or more pulse generators coupled to a plurality of electrodes, and a controller communicatively coupled to the one or more pulse generators and configured to cause the one or more pulse generators to apply a combination of CRT and TID therapy to a patient's heart via the plurality of electrodes in accordance with at least one protocol.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: June 18, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Jennifer Rhude, Edward Karst, Taraneh G. Farazi
  • Publication number: 20190091478
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding efficacy score was determined, if the efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Patent number: 10179243
    Abstract: The present disclosure provides systems and methods for providing temporary induced dyssynchrony (TID) therapy to patients with atrial tachycardia. An implantable cardiac device includes a pulse generator coupled to a plurality of electrodes, and a controller communicatively coupled to the pulse generator and configured to cause the pulse generator to apply TID therapy to a patient's heart via the plurality of electrodes, determine that the patient's heart is experiencing atrial tachycardia, and adjust at least one parameter of the TID therapy based on the determination.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: January 15, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Jennifer Rhude, Edward Karst, Taraneh G. Farazi
  • Patent number: 10173066
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding NAVH efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the NAVH efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding NAVH efficacy score was determined, if the NAVH efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 8, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Publication number: 20180361166
    Abstract: The present disclosure provides systems and methods for integrating cardiac resynchronization therapy (CRT) and temporary induced dyssynchrony (TID) therapy.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Yelena Nabutovsky, Jennifer Rhude, Edward Karst, Taraneh G. Farazi
  • Publication number: 20180361156
    Abstract: The present disclosure provides systems and methods for providing temporary induced dyssynchrony (TID) therapy to patients with atrial tachycardia. An implantable cardiac device includes a pulse generator coupled to a plurality of electrodes, and a controller communicatively coupled to the pulse generator and configured to cause the pulse generator to apply TID therapy to a patient's heart via the plurality of electrodes, determine that the patient's heart is experiencing atrial tachycardia, and adjust at least one parameter of the TID therapy based on the determination.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Yelena Nabutovsky, Jennifer Rhude, Edward Karst, Taraneh G. Farazi
  • Publication number: 20180361147
    Abstract: The present disclosure describes systems and methods for providing temporary induced dyssynchrony (TID) therapy. An implantable cardiac device includes a pulse generator coupled to a plurality of electrodes, and a controller communicatively coupled to the pulse generator. The controller is configured to receive a signal and determine whether to cause the pulse generator to apply TID therapy to a patient's heart based at least in part upon the received signal.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Edward Karst, Yelena Nabutovsky, Jennifer Rhude, Taraneh G. Farazi