Patents by Inventor Jennifer Teng

Jennifer Teng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230111536
    Abstract: One aspect of the present disclosure includes a delivery tool configured to deliver a neurostimulator into a pterygopalatine fossa of a subject. The neurostimulator can include a body connected to an integral stimulation lead having one or more stimulating electrodes. The delivery tool can comprise a handle, an elongated shaft extending from the handle, a hub portion, and a double barrel sheath. The hub portion can be located between the shaft and a spine member that extends axially away from the hub portion. The hub portion can be sized and dimensioned to releasably mate with the neurostimulator. The double barrel sheath can be connected to the spine member. A central lumen can extend through at least a portion of the shaft and the hub portion. The central lumen can be adapted to receive a lead ejector for selective deployment of the stimulation lead from the double barrel sheath.
    Type: Application
    Filed: September 21, 2022
    Publication date: April 13, 2023
    Inventors: Tom Luhrs, Alan Cheng, Ryan Powell, Jennifer Teng
  • Patent number: 11478641
    Abstract: One aspect of the present disclosure includes a delivery tool configured to deliver a neurostimulator into a pterygopalatine fossa of a subject. The neurostimulator can include a body connected to an integral stimulation lead having one or more stimulating electrodes. The delivery tool can comprise a handle, an elongated shaft extending from the handle, a hub portion, and a double barrel sheath. The hub portion can be located between the shaft and a spine member that extends axially away from the hub portion. The hub portion can be sized and dimensioned to releasably mate with the neurostimulator. The double barrel sheath can be connected to the spine member. A central lumen can extend through at least a portion of the shaft and the hub portion. The central lumen can be adapted to receive a lead ejector for selective deployment of the stimulation lead from the double barrel sheath.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: October 25, 2022
    Assignee: Realeve, LLC
    Inventors: Tom Luhrs, Alan Cheng, Ryan Powell, Jennifer Teng
  • Publication number: 20200197697
    Abstract: One aspect of the present disclosure includes a delivery tool configured to deliver a neurostimulator into a pterygopalatine fossa of a subject. The neurostimulator can include a body connected to an integral stimulation lead having one or more stimulating electrodes. The delivery tool can comprise a handle, an elongated shaft extending from the handle, a hub portion, and a double barrel sheath. The hub portion can be located between the shaft and a spine member that extends axially away from the hub portion. The hub portion can be sized and dimensioned to releasably mate with the neurostimulator. The double barrel sheath can be connected to the spine member. A central lumen can extend through at least a portion of the shaft and the hub portion. The central lumen can be adapted to receive a lead ejector for selective deployment of the stimulation lead from the double barrel sheath.
    Type: Application
    Filed: January 7, 2020
    Publication date: June 25, 2020
    Inventors: Tom Luhrs, Alan Cheng, Ryan Powell, Jennifer Teng
  • Patent number: 10098662
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 16, 2018
    Assignees: The Cleveland Clinic Foundation, Autonomic Technologies, Inc.
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Publication number: 20170165482
    Abstract: One aspect of the present disclosure includes a delivery tool configured to deliver a neurostimulator into a pterygopalatine fossa of a subject. The neurostimulator can include a body connected to an integral stimulation lead having one or more stimulating electrodes. The delivery tool can comprise a handle, an elongated shaft extending from the handle, a hub portion, and a double barrel sheath. The hub portion can be located between the shaft and a spine member that extends axially away from the hub portion. The hub portion can be sized and dimensioned to releasably mate with the neurostimulator. The double barrel sheath can be connected to the spine member. A central lumen can extend through at least a portion of the shaft and the hub portion. The central lumen can be adapted to receive a lead ejector for selective deployment of the stimulation lead from the double barrel sheath.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 15, 2017
    Inventors: Tom Luhrs, Alan Cheng, Ryan Powell, Jennifer Teng
  • Publication number: 20170007283
    Abstract: One aspect of the present disclosure includes a neurostimulator delivery apparatus. The apparatus includes a handle portion, an elongate shaft extending from the handle portion, and a distal deployment portion. The distal deployment portion is configured to releasably mate with a neurostimulator. The neurostimulator is sized and configured for implantation into a craniofacial region of a subject.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 12, 2017
    Inventors: Carl Lance Boling, Anthony V. Caparso, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Patent number: 9456836
    Abstract: One aspect of the present disclosure includes a neurostimulator delivery apparatus. The apparatus includes a handle portion, an elongate shaft extending from the handle portion, and a distal deployment portion. The distal deployment portion is configured to releasably mate with a neurostimulator. The neurostimulator is sized and configured for implantation into a craniofacial region of a subject.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 4, 2016
    Assignee: AUTONOMIC TECHNOLOGIES, INC.
    Inventors: Carl Lance Boling, Anthony V. Caparso, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Patent number: 9370396
    Abstract: A transition apparatus for use with a medical device having an elongate element is disclosed. The apparatus may include a body defining a lumen for housing at least a portion of the elongate element. The body may have a proximal end configured for releasable connection to the medical device and a distal end. The apparatus may further include a connection piece connected to the distal end of the body. The connection piece may have a first opening configured to receive the elongate element from the lumen of the body and a second opening configured to receive the elongate element from the first opening and direct the elongate element toward the body. A method of connecting a transition apparatus to an ablation device having a leash is also disclosed.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 21, 2016
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Andrew M. Radin, Thomas B. Eby, Vera S. Boudtchenko, Jennifer Teng, John P. Goetz
  • Publication number: 20160081716
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 24, 2016
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Patent number: 9220524
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 29, 2015
    Assignees: The Cleveland Clinic Foundation, Autonomic Technologies, Inc.
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Publication number: 20140048977
    Abstract: A method and apparatus for molding a medical device utilizes a rigid outer stiffener and a flexible inner mold that nests with the outer stiffener. The medical device can be a stimulating apparatus used to deliver electrical stimulation to a peripheral, central or autonomic neural structure. More specifically, the medical device can be a neurostimulator apparatus designed to delivery electrical stimulation to the sphenopalatine ganglion (SPG) to treat primary headaches, such as migraines, cluster headaches and/or many other neurological disorders, such as atypical facial pain and/or trigeminal neuralgias.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: AUTONOMIC TECHNOLOGIES, INC.
    Inventors: Ryan Powell, Carl Lance Boling, Jennifer Teng, Morgan Clyburn
  • Patent number: 8382689
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: February 26, 2013
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli
  • Publication number: 20120290057
    Abstract: One aspect of the present disclosure includes a neurostimulator delivery apparatus. The apparatus includes a handle portion, an elongate shaft extending from the handle portion, and a distal deployment portion. The distal deployment portion is configured to releasably mate with a neurostimulator. The neurostimulator is sized and configured for implantation into a craniofacial region of a subject.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 15, 2012
    Inventors: Carl Lance Boling, Anthony V. Caparso, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Publication number: 20120277761
    Abstract: A surgical tool configured to facilitate delivery of a neurostimulator to a craniofacial region of a subject includes a handle portion, an elongate shaft having a contoured distal portion, and an insertion groove on the elongate shaft. The elongate shaft is configured to be advanced under a zygomatic bone along a maxillary tuberosity towards a pterygopalatine fossa. The distal portion includes a distal dissecting tip. The insertion groove is configured to receive, support, and guide a medical device or instrument.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 1, 2012
    Inventors: Carl Lance Boling, Anthony V. Caparso, Francis A. Papay, Ryan Powell, Jennifer Teng, Morgan Clyburn
  • Patent number: 8273083
    Abstract: A carrier for an ablation element is provided. The carrier includes a plurality of walls defining a receiving portion configured to receive at least a portion of an ablation element. A plurality of connection formations are disposed on an exterior surface of least one of the plurality of walls. Each of the plurality of connection formations is disposed at a different vertical position of the carrier. A device for epicardial ablation is also provided. The device includes a plurality of carriers disposed adjacent to each other. Each carrier includes a plurality of walls defining a receiving portion configured to receive at least a portion of an ablation element. A plurality of connection formations are disposed on an exterior surface of at least one of the plurality of walls of each carrier. Each of the plurality of connection formations is disposed at a different vertical position of a carrier.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: September 25, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Andrew M. Radin, Thomas B. Eby, Vera S. Boudtchenka, Jennifer Teng, John P. Goetz, John E. Crowe
  • Patent number: 8102734
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: January 24, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli
  • Publication number: 20090171347
    Abstract: A transition apparatus for use with a medical device having an elongate element is disclosed. The apparatus may include a body defining a lumen for housing at least a portion of the elongate element. The body may have a proximal end configured for releasable connection to the medical device and a distal end. The apparatus may further include a connection piece connected to the distal end of the body. The connection piece may have a first opening configured to receive the elongate element from the lumen of the body and a second opening configured to receive the elongate element from the first opening and direct the elongate element toward the body. A method of connecting a transition apparatus to an ablation device having a leash is also disclosed.
    Type: Application
    Filed: December 26, 2007
    Publication date: July 2, 2009
    Inventors: Andrew M. Radin, Thomas B. Eby, Vera S. Boudtchenko, Jennifer Teng, John P. Goetz
  • Publication number: 20090163914
    Abstract: A carrier for an ablation element is provided. The carrier includes a plurality of walls defining a receiving portion configured to receive at least a portion of an ablation element. A plurality of connection formations are disposed on an exterior surface of least one of the plurality of walls. Each of the plurality of connection formations is disposed at a different vertical position of the carrier. A device for epicardial ablation is also provided. The device includes a plurality of carriers disposed adjacent to each other. Each carrier includes a plurality of walls defining a receiving portion configured to receive at least a portion of an ablation element. A plurality of connection formations are disposed on an exterior surface of at least one of the plurality of walls of each carrier. Each of the plurality of connection formations is disposed at a different vertical position of a carrier.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Andrew M. Radin, Thamas B. Eby, Vera S. Boudtchenko, Jennifer Teng, John P. Goetz, John E. Crowe
  • Publication number: 20080194965
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli
  • Publication number: 20080194967
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli