Patents by Inventor Jens Ebbecke

Jens Ebbecke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136468
    Abstract: In an embodiment a method for producing an optoelectronic semiconductor component includes A) providing a semiconductor body comprising, sequentially in a vertical direction, a first layer of a first conductivity type, an active layer formed as a quantum well structure provided for emission of electromagnetic radiation, and a second layer of a second conductivity type and B) irradiating the semiconductor body with a focused electromagnetic radiation such that a focus region of the electromagnetic radiation lies within the active layer and overlaps with the quantum well structure, wherein the electromagnetic radiation has an intensity which is sufficiently large in the focus region to cause point defects in the quantum well structure so that a defect region is formed and so that a generation of the point defects is limited to the focus region, and wherein a density of point defects in the first layer and the second layer is not changed in B).
    Type: Application
    Filed: February 23, 2022
    Publication date: April 25, 2024
    Inventors: Jens Ebbecke, Kristina Schelestow, Markus Graul, Hans-Joachim Meyer, Richard Floeter
  • Publication number: 20230378715
    Abstract: In at least one embodiment, the environment sensor for sensing at least one environment parameter includes a semiconductor layer sequence, a sheath, the index of refraction of which changes as a function of the environment parameter, and a first electrical contact and a second electrical contact for supplying current to the semiconductor layer sequence. The semiconductor layer sequence has the shape of a generalized cylinder having a main axis. In directions perpendicular to the main axis, the semiconductor layer sequence is at least partly covered by the sheath. The semiconductor layer sequence has an index of refraction which is greater than the index of refraction of the sheath. The semiconductor layer sequence is designed to form laser modes within the environment sensor.
    Type: Application
    Filed: August 26, 2021
    Publication date: November 23, 2023
    Applicant: ams-OSRAM International GmbH
    Inventor: Jens EBBECKE
  • Publication number: 20230120369
    Abstract: In an embodiment a radiation emitting semiconductor body includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and an active region located between the first semiconductor region and the second semiconductor region, wherein the active region comprises InGaAlP, wherein the first conductivity type is n-conductive and the second conductivity type is p-conductive, wherein the active region has a larger band gap in an edge region of the semiconductor body than in a central region of the semiconductor body, and wherein a band gap of the second semiconductor region in the edge region and in the central region is the same.
    Type: Application
    Filed: February 22, 2021
    Publication date: April 20, 2023
    Inventor: Jens Ebbecke
  • Publication number: 20230063982
    Abstract: The semiconductor laser diode includes a semiconductor layer sequence having an active zone. The semiconductor layer sequence has a shape of a generalized cylinder or a frustum, and a main axis of the semiconductor layer sequence is perpendicular to a main extension plane of the semiconductor layer sequence. The semiconductor layer sequence has a core region and an edge region directly adjacent to the core region. The main axis passes through the core region. The edge region borders the core region in directions perpendicular to the main axis. The semiconductor layer sequence has a larger refractive index in the core region than in the edge region.
    Type: Application
    Filed: January 12, 2021
    Publication date: March 2, 2023
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventor: Jens Ebbecke
  • Publication number: 20230023759
    Abstract: An optoelectronic component (10) is specified, comprising a semiconductor body (6) with an active region (4) suitable for emission of radiation and comprising a quantum well structure, wherein the quantum well structure comprises at least one quantum well layer (41) and barrier layers (42), a first electrical contact (1) and a second electrical contact (2), wherein the active region (4) comprises at least one intermixed region (44) and at least one non-intermixed region (43). The at least one quantum well layer (41) and the barrier layers (42) are at least partially intermixed in the intermixed region (44), such that the intermixed region (44) comprises a larger electronic bandgap than the at least one quantum well layer (41) in the non-intermixed region (43). The first electrical contact (1) is a metal contact arranged on a radiation exit surface of the semiconductor body (6), wherein the intermixed region (44) is arranged below the first contact (1) in the vertical direction.
    Type: Application
    Filed: November 3, 2020
    Publication date: January 26, 2023
    Inventor: Jens Ebbecke
  • Publication number: 20220254957
    Abstract: In an embodiment a method for manufacturing a semiconductor device include providing a growth substrate, depositing an n-doped first layer, depositing an active region on the n-doped first layer, depositing a second layer onto the active region, depositing magnesium (Mg) in the second layer and subsequently to depositing Mg, depositing zinc (Zn) in the second layer such that a concentration of Zn in the second layer decreases from a first value to a second value in a first area of the second layer adjacent to the active region, the first area being in a range of 5 nm to 200 nm.
    Type: Application
    Filed: May 19, 2020
    Publication date: August 11, 2022
    Inventors: Philipp Kreuter, Andreas Biebersdorf, Christoph Klemp, Jens Ebbecke, Ines Pietzonka, Petrus Sundgren
  • Publication number: 20220238752
    Abstract: Embodiments provide a method for treating a semiconductor wafer comprising a set of aluminum gallium indium phosphide light emitting diodes (AlGaInP-LEDs) to increase a light generating efficiency of the AlGaInP-LEDs, wherein each AlGaInP-LED includes a core active layer for light generation sandwiched between two outer layers, the core active layer having a central light generating area and a peripheral edge surrounding the central light generating area, wherein the method includes treating the peripheral edge of the core active layer of each AlGaInP-LED with a laser beam thereby increasing a minimum band gap in each peripheral edge to such an extent that, during operation of the AlGaInP-LED, an electron-hole recombination is essentially confined to the central light generating area.
    Type: Application
    Filed: May 19, 2020
    Publication date: July 28, 2022
    Inventors: Jens Ebbecke, Philipp Kreuter, Christoph Klemp, Andreas Biebersdorf, Ines Pietzonka, Petrus Sundgren
  • Publication number: 20220123529
    Abstract: The invention relates to an edge emitting laser diode comprising a semiconductor layer stack whose growth direction defines a vertical direction, and wherein the semiconductor layer stack comprises an active layer and a waveguide layer. A thermal stress element is arranged in at least indirect contact with the semiconductor layer stack, the thermal stress element being configured to generate a thermally induced mechanical stress in the waveguide layer that counteracts the formation of a thermal lens.
    Type: Application
    Filed: January 16, 2020
    Publication date: April 21, 2022
    Inventor: Jens EBBECKE
  • Publication number: 20220102941
    Abstract: In an embodiment, an edge-emitting semiconductor laser diode includes a growth substrate, a semiconductor layer sequence located on the growth substrate, the semiconductor layer sequence having an active layer and an etch stop layer and two facets located opposite each other, wherein the facets bound the semiconductor layer sequence in a lateral direction, wherein the semiconductor layer sequence includes two edge regions adjoining the facets and a central region directly adjoining both edge regions, wherein, within each of the edge regions, a volume fraction of the active layer in the semiconductor layer sequence is smaller than in the central region, wherein the active layer is spaced apart from one facet, wherein a distance of the active layer to the facet varies along a direction parallel to this facet, and wherein the etch stop layer is arranged between the growth substrate and the active layer.
    Type: Application
    Filed: July 9, 2020
    Publication date: March 31, 2022
    Inventors: Martin Hetzl, Petrus Sundgren, Jens Ebbecke, Uwe Strauß
  • Publication number: 20220093821
    Abstract: An optoelectronic semiconductor element may emit electromagnetic radiation. The optoelectronic semiconductor element may include a semiconductor body and a reflective lattice structure directly adjacent to a first main surface of the semiconductor body. The reflective lattice structure may be made of layer portions periodically arranged in the horizontal direction. The first main surface may be different from an exit surface of the electromagnetic radiation.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 24, 2022
    Inventor: Jens EBBECKE
  • Publication number: 20220029388
    Abstract: In an embodiment, the gain-guided semiconductor laser includes a semiconductor layer sequence and electrical contact pads. The semiconductor layer sequence includes an active zone for radiation generation, a waveguide layer, and a cladding layer. The semiconductor layer sequence further includes a current diaphragm layer which is electrically conductive along a resonator axis (R) in a central region and electrically insulating in adjoining edge regions. Transverse to the resonator axis (R), the central region includes a width of at least 10 ?m and the edge regions includes at least a minimum width. The minimum width is 3 ?m or more. Seen in plan view, the semiconductor layer sequence as well as at least one of the contact pads on the semiconductor layer sequence are continuous components extending in the central region as well as on both sides at least up to the minimum width in the direction transverse to the resonator axis adjoining the central region and beyond the central region.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 27, 2022
    Inventor: Jens Ebbecke
  • Publication number: 20210408764
    Abstract: The invention relates to laser diode for generating laser radiation of at least two frequencies, comprising: a semiconductor body having a ridge waveguide; a DFB structure or DBR structure in the ridge waveguide; and a piezoelectric element for producing mechanical stress in the ridge waveguide, which piezoelectric element is arranged on the ridge waveguide. The invention further relates to a method for producing laser radiation of at least two frequencies by means of the laser diode.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 30, 2021
    Inventor: Jens EBBECKE
  • Patent number: 11107954
    Abstract: A light-emitting diode chip that includes an epitaxial semiconductor layer sequence having an active region that generates electromagnetic radiation during operation, and a passivation layer comprising magnesium oxide and magnesium nitride. The passivation layer may be applied to a lateral surface of the semiconductor layer sequence, and the passivation layer covering at least the active region.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: August 31, 2021
    Assignee: Osram Oled GmbH
    Inventor: Jens Ebbecke
  • Publication number: 20210234068
    Abstract: An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body having a first region of a first conductive type, an active region configured to generate electromagnetic radiation, a second region of a second conductive type and a coupling-out surface configured to couple-out the electromagnetic radiation, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, and wherein the coupling-out surface is arranged plane-parallel to the rear surface.
    Type: Application
    Filed: April 13, 2021
    Publication date: July 29, 2021
    Inventors: Harald König, Jens Ebbecke, Alfred Lell, Sven Gerhard, Clemens Vierheilig
  • Patent number: 11056628
    Abstract: A method of manufacturing an optoelectronic semiconductor chip includes providing a growth substrate, growing a semiconductor layer sequence on the growth substrate, depositing a metallization on a side of the semiconductor layer sequence remote from the growth substrate, depositing a layer on the metallization, coupling a carrier to the layer on a side of the layer remote from the semiconductor layer sequence, separating the growth substrate from the semiconductor layer sequence, depositing an electrically conductive layer on a side of the semiconductor layer sequence facing away from the carrier, separating the carrier from the layer, thereby forming a layer stack with the metallization, the semiconductor layer sequence, the electrically conductive layer and a coupling layer including at least a part of a further material of the layer remaining on a side of the metallization remote from the semiconductor layer sequence, and coupling the layer stack to a chip carrier.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 6, 2021
    Assignee: OSRAM OLED GmbH
    Inventor: Jens Ebbecke
  • Patent number: 11005005
    Abstract: An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body comprising a first region of a first conductive type, an active region, a second region of a second conductive type and a coupling-out surface, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, wherein the coupling-out surface is arranged plane-parallel to the rear surface, and wherein the coupling-out surface and the rear surface of the semiconductor body are produced by an etching process.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 11, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Harald König, Jens Ebbecke, Alfred Lell, Sven Gerhard, Clemens Vierheilig
  • Patent number: 10937922
    Abstract: A method for exposing side surfaces of a semiconductor body is disclosed. In an embodiment a method includes providing the semiconductor body having a laterally extending first main surface, forming a plurality of vertical side surfaces by partially removing material of the semiconductor body and thereby removing the first main surface in places, wherein each of the side surfaces forms an angle (?) between 110° and 160° inclusive with the remaining first main surface, applying a protective layer onto the semiconductor body so that, in a plan view, the protective layer completely covers the remaining first main surface and the obliquely formed side surfaces and partially removing the protective layer so that the protective layer is removed in regions on the obliquely formed side surfaces because of an inclination and remains at least partially preserved in regions on the remaining first main surface during a common process operation.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: March 2, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Jens Ebbecke, Sebastian Taeger
  • Patent number: 10867873
    Abstract: A method and a device for measuring a plurality of semiconductor chips in a wafer array are disclosed. In an embodiment a method for measuring the semiconductor chips in a wafer array, wherein the wafer array is arranged on an electrically conductive carrier so that in each case back contacts of the semiconductor chips are contacted by the carrier, wherein a contact structure is arranged on a side of the wafer array facing away from the carrier, and wherein the contact structure includes a contact element and/or a plurality of radiation-emitting measurement semiconductor chips, includes applying a voltage between the contact structure and the carrier and measuring the semiconductor chips depending on a luminous image which is generated by emitted radiation which is caused simultaneously by fluorescence when the semiconductor chips are illuminated or by a radiation-emitting operation of the measurement semiconductor chips when the voltage is applied.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: December 15, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Holger Specht, Roland Zeisel, Anton Vogl, Jens Ebbecke
  • Patent number: 10763238
    Abstract: A method of aligning semiconductor chips in a medium includes providing an electrically insulating liquid medium; providing semiconductor chips; forming a suspension with the medium and the semiconductor chips; exposing the semiconductor chips to electromagnetic radiation that generates free charge carriers in the semiconductor chips; arranging the suspension in an electric field in which the semiconductor chips are aligned along the electric field; and curing the medium after aligning the semiconductor chips.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: September 1, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Philipp Kreuter, Andreas Biebersdorf, Christoph Klemp, Jens Ebbecke, Ines Pietzonka, Petrus Sundgren
  • Patent number: 10651342
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor body comprising a first semiconductor structure, a second semiconductor structure and an active region between the first and the second semiconductor structure and a plurality of recesses, each penetrating at least one of the semiconductor structures and the active region, wherein a cover surface of the active region is a continuous surface, and wherein at least in some of the recesses, surfaces of the recesses are completely covered with an electrically insulating material.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: May 12, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Roland Zeisel, Michael Binder, Jens Ebbecke, Tobias Meyer