Patents by Inventor Jens Fink

Jens Fink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9211515
    Abstract: Methods and devices are provided for transfer of particulate material, such as biomass feedstocks, into and out of pressurized reactors. Improved sluice devices have an L-shaped sluice chamber having an upper, vertical component in communication with a horizontal loading chamber and a lower component in communication with a vertical reactor inlet or outlet. Piston valves seal the sluice inlet and outlet by axial displacement across the vertical component of the sluice chamber and across the vertical reactor inlet or outlet. Relative to other methods for reactor unloading, these devices consume less steam and significantly reduce furfural content of unloaded, pretreated biomass. An optional hybrid plug/sluice method of biomass feeding using the devices permits biomass loading at sluice pressures intermediate between atmospheric and reactor pressure, thereby reducing “pump cycle” time and increasing biomass throughput capacity.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 15, 2015
    Assignee: INBICON A/S
    Inventors: Jens Fink, Niels Nielsen Poulsen
  • Patent number: 9056294
    Abstract: Methods and devices are provided for transfer of particulate material, such as biomass feedstocks, into and out of pressurized reactors. Improved sluice devices have an L-shaped sluice chamber having an upper, vertical component in communication with a horizontal loading chamber and a lower component in communication with a vertical reactor inlet or outlet. Piston valves seal the sluice inlet and outlet by axial displacement across the vertical component of the sluice chamber and across the vertical reactor inlet or outlet. Relative to other methods for reactor unloading, these devices consume less steam and significantly reduce furfural content of unloaded, pretreated biomass. An optional hybrid plug/sluice method of biomass feeding using the devices permits biomass loading at sluice pressures intermediate between atmospheric and reactor pressure, thereby reducing “pump cycle” time and increasing biomass throughput capacity.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 16, 2015
    Assignee: Inbicon A/S
    Inventors: Jens Fink, Niels Nielsen Poulsen
  • Publication number: 20110197992
    Abstract: Methods and devices are provided for transfer of particulate material, such as biomass feedstocks, into and out of pressurized reactors. Improved sluice devices have an L-shaped sluice chamber having an upper, vertical component in communication with a horizontal loading chamber and a lower component in communication with a vertical reactor inlet or outlet. Piston valves seal the sluice inlet and outlet by axial displacement across the vertical component of the sluice chamber and across the vertical reactor inlet or outlet. Relative to other methods for reactor unloading, these devices consume less steam and significantly reduce furfural content of unloaded, pretreated biomass. An optional hybrid plug/sluice method of biomass feeding using the devices permits biomass loading at sluice pressures intermediate between atmospheric and reactor pressure, thereby reducing “pump cycle” time and increasing biomass throughput capacity.
    Type: Application
    Filed: August 27, 2010
    Publication date: August 18, 2011
    Inventors: Jens Fink, Niels Nielsen Poulsen
  • Publication number: 20110162741
    Abstract: Methods and devices are provided for transfer of particulate material, such as biomass feedstocks, into and out of pressurized reactors. Improved sluice devices have an L-shaped sluice chamber having an upper, vertical component in communication with a horizontal loading chamber and a lower component in communication with a vertical reactor inlet or outlet. Piston valves seal the sluice inlet and outlet by axial displacement across the vertical component of the sluice chamber and across the vertical reactor inlet or outlet. Relative to other methods for reactor unloading, these devices consume less steam and significantly reduce furfural content of unloaded, pretreated biomass. An optional hybrid plug/sluice method of biomass feeding using the devices permits biomass loading at sluice pressures intermediate between atmospheric and reactor pressure, thereby reducing “pump cycle” time and increasing biomass throughput capacity.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 7, 2011
    Inventors: Jens Fink, Niels Nielsen Poulsen