Patents by Inventor Jens-Holger Barth

Jens-Holger Barth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846244
    Abstract: A method for operating an injection valve by ascertaining an opening time and/or closing time of the injection valve on the basis of a sensor signal. The method includes: providing an analysis point time series by sampling a sensor signal of a sensor of the injection valve; using a nonlinear, data-based first submodel in order to obtain a first model output on the basis of the analysis point time series; using a linear, data-based second submodel in order to obtain a second model output on the basis of the analysis point time series; ascertaining the opening time and/or closing time as a function of the first and second model outputs.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: December 19, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230340917
    Abstract: A method for operating an injection valve by determining an opening or closing time of the injection valve based on a sensor signal. The method includes: providing an evaluation point time series by sampling a sensor signal of a sensor of the injection valve; using a non-linear data-based first sub-model to obtain a first output vector based on the evaluation point time series, wherein each element of the first output vector is associated with a specific time; using a linear, data-based second sub-model to obtain a second output vector based on the evaluation point time series, wherein each element of the second output vector is associated with a specific time; limiting the time determined by the first output vector depending on the second output vector in order to obtain the opening or closing time.
    Type: Application
    Filed: September 10, 2021
    Publication date: October 26, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230313752
    Abstract: A method for training a data-based evaluation model to determine an opening or closing time of an injection valve based on a sensor signal. The method includes: measuring an operation of the injection valve in order to determine at least one sensor signal and an associated opening or closing time; sampling the sensor signal at a sampling rate in order to obtain a sensor signal time series with sensor signal values; determining a plurality of training data sets by assigning a plurality of evaluation point time series generated from a sensor signal time series to the opening or closing time associated with the sensor signal, wherein the evaluation point time series has a lower temporal resolution than the sensor signal time series; training the data-based evaluation model depending on the determined training data sets.
    Type: Application
    Filed: September 10, 2021
    Publication date: October 5, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230229121
    Abstract: A computer-implemented method for training a data-based time determining model for determining an opening or closing time of an injection valve based on a sensor signal. The method includes: providing an unlabeled analysis point time series by sampling the sensor signal of a sensor of the injection valve; training the data-based time determining model to assign a time specification which represents a specific opening or closing duration to an analysis point time series, the training process being carried out using a first shifting function to time-shift the analysis point time series and a second shifting function in order to time-shift the time specification. A consistency loss function is used for the training process.
    Type: Application
    Filed: September 10, 2021
    Publication date: July 20, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20230228226
    Abstract: A method for operating an injection valve by ascertaining an opening time and/or closing time of the injection valve on the basis of a sensor signal. The method includes: providing an analysis point time series by sampling a sensor signal of a sensor of the injection valve; using a nonlinear, data-based first submodel in order to obtain a first model output on the basis of the analysis point time series; using a linear, data-based second submodel in order to obtain a second model output on the basis of the analysis point time series; ascertaining the opening time and/or closing time as a function of the first and second model outputs.
    Type: Application
    Filed: September 10, 2021
    Publication date: July 20, 2023
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Patent number: 11454202
    Abstract: A computer-implemented method for ascertaining a closure point in time of an injector of an internal combustion engine using a classifier. The method includes: ascertaining a time series of input signals, each corresponding to a point in time within the time series, and each characterizing a deformation of the injector; ascertaining a plurality of first values using the classifier based on the time series, in each case a first value corresponding to a point in time of the time series, and the first value characterizing a probability that the closure point in time of the injector matches the point in time; ascertaining a plurality of second values, each being a sum of neighboring first values, of a first value and the first value, the second value corresponding to the point in time to which the first value corresponds; ascertaining the closure point in time based on the largest second value.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 27, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20220170436
    Abstract: A computer-implemented method for ascertaining a closure point in time of an injector of an internal combustion engine using a classifier. The method includes: ascertaining a time series of input signals, each corresponding to a point in time within the time series, and each characterizing a deformation of the injector; ascertaining a plurality of first values using the classifier based on the time series, in each case a first value corresponding to a point in time of the time series, and the first value characterizing a probability that the closure point in time of the injector matches the point in time; ascertaining a plurality of second values, each being a sum of neighboring first values, of a first value and the first value, the second value corresponding to the point in time to which the first value corresponds; ascertaining the closure point in time based on the largest second value.
    Type: Application
    Filed: November 22, 2021
    Publication date: June 2, 2022
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden
  • Publication number: 20100186718
    Abstract: A method is described for operating an injector, in particular an injector of an injection system of an internal combustion engine, the injector including a piezoelectric actuator that is connected to a valve needle via a coupling element, an electric voltage being applied to the piezoelectric actuator, resulting in an increase and/or decrease in the length of the piezoelectric actuator, a holding voltage being applied to the piezoelectric actuator when the injector is closed. The voltage of the piezoelectric actuator is brought to the holding voltage by a recharge sequence.
    Type: Application
    Filed: December 3, 2007
    Publication date: July 29, 2010
    Inventors: Manfred Klein, Jens-holger Barth, Andreas Schmitt, Markus Krieg
  • Patent number: 7528524
    Abstract: An apparatus and a method for controlling a piezoelectric actuator are described. The voltage applied to the piezoelectric actuator is detected at a specified time. If certain variables are present, the detection of the voltage and/or the relaying of a detected voltage value is blocked.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: May 5, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Johannes-Joerg Rueger, Udo Schulz, Jens-Holger Barth
  • Publication number: 20060152879
    Abstract: An apparatus and a method for controlling a piezoelectric actuator are described. The voltage applied to the piezoelectric actuator is detected at a specified time. If certain variables are present, the detection of the voltage and/or the relaying of a detected voltage value is blocked.
    Type: Application
    Filed: September 29, 2003
    Publication date: July 13, 2006
    Inventors: Johannes-Joerg Rueger, Udo Schulz, Jens-Holger Barth
  • Patent number: 7016780
    Abstract: In an internal combustion engine, fuel is injected directly into a combustion chamber by an injector that has a piezoactuator. An electrical charge conveyed to and/or removed from the piezoactuator is ascertained by a method that is calibrated at least once during an operating time span of the internal combustion engine. To allow the calibration to be carried out or performed as often as possible, the method for ascertaining the electrical charge transferred to and/or removed from the piezoactuator may be calibrated during at least one triggering off-time (dtK) of the piezoactuator while the internal combustion engine is operating.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: March 21, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Marco Graf, Andreas Huber, Marco Gangi, Andreas Juergen Rohatschek, Udo Schulz, Jens-Holger Barth
  • Publication number: 20050131623
    Abstract: In an internal combustion engine, fuel is injected directly into a combustion chamber by an injector that has a piezoactuator. An electrical charge conveyed to and/or removed from the piezoactuator is ascertained by a method that is calibrated at least once during an operating time span of the internal combustion engine. To allow the calibration to be carried out or performed as often as possible, the method for ascertaining the electrical charge transferred to and/or removed from the piezoactuator may be calibrated during at least one triggering off-time (dtK) of the piezoactuator while the internal combustion engine is operating.
    Type: Application
    Filed: May 28, 2003
    Publication date: June 16, 2005
    Applicant: Robert Bosch GmbH
    Inventors: Marco Graf, Andreas Huber, Marco Gangi, Andreas Rohatschek, Udo Schulz, Jens-Holger Barth