Patents by Inventor Jens Lykke Sørensen

Jens Lykke Sørensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085378
    Abstract: A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, René Gajda Kristensen, Martin Christian Høj Petersen
  • Patent number: 11852609
    Abstract: A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: December 26, 2023
    Assignee: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, René Gajda Kristensen, Martin Christian Høj Petersen
  • Publication number: 20230008984
    Abstract: A fluid consumption meter (50) configured to measure a flow rate of a fluid and with a noise detection module (40) for leak detection. Also having a control device with a bi-directional communication unit (60) and being configured to receive a leak detection control signal from an external device (100), to set the fluid consumption meter (50) into a leak detection mode upon reception of the leak detection control signal, and to start a noise measurement for leak detection in said leak detection mode and to transmit data from said noise detection module, an to a leak detection system.
    Type: Application
    Filed: November 26, 2020
    Publication date: January 12, 2023
    Inventors: Sune Hoveroust DUPONT, Jens Lykke SØRENSEN, Søren Tønnes NIELSEN, Anders HEDEGAARD
  • Patent number: 11391699
    Abstract: A turbidity measurement device for measuring turbidity of a fluid flowing in a flow tube. A first transducer transmits ultrasonic signals through the fluid in the turbidity measurement section so as to provide a first ultrasonic standing wave between the first and second section ends. A receiver transducer receives the ultrasonic scattered response from particles in the fluid flowing through the turbidity measurement section. A control circuit operates the transducers and generates a signal indicative of the turbidity of the fluid in response to signals received from the receiver transducer. Preferably, the device may comprise a second transducer for generating a second ultrasonic standing wave with the same frequency, and further the two transducers may be used to generate a measure of flow rate by means of known ultrasonic techniques. This flow rate may be used in the calculation of a measure of turbidity.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: July 19, 2022
    Assignee: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, Sune Hoveroust Dupont
  • Patent number: 10921288
    Abstract: A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: February 16, 2021
    Assignee: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, René Gajda Kristensen, Martin Christian Høj Petersen
  • Publication number: 20210003531
    Abstract: A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, René Gajda Kristensen, Martin Christian Høj Petersen
  • Patent number: 10564017
    Abstract: Ultrasonic flowmeter for measuring the flowrate of a fluid based on transit times of opposite propagating ultrasonic wave packets, including two ultrasonic transducers arranged at a flow tube for transmitting and receiving the ultrasonic wave packets through a fluid; a control circuit configured for operating the ultrasonic transducers to transmit and receive co-propagating and counter-propagating ultrasonic wave packets, and to determine transit times between transmission and reception of the ultrasonic wave packets; wherein the control circuit is further configured to continuously determine the flowrate of the fluid based on sequential application of separate flow measurement sequences and flow estimation sequences, the flow measurement sequence including transmitting and receiving a co-propagating wave packet and a counter-propagating wave packet, determining a transit time difference between the co-propagating and the counter-propagating wave packets, determining the speed of sound in the fluid, and calcu
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: February 18, 2020
    Assignee: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Jens Lykke Sørensen, Paul Martin Bendixen
  • Patent number: 10429261
    Abstract: The invention provides a pressure sensor device arranged for measuring a pressure in a fluid pipe system, e.g. a utility network. A measurement system with a pressure sensor serves to measure pressure in the fluid pipe system, and a data processing unit determines at least one statistical parameter in response to a plurality of pressure measurements. Data packets with the statistical parameter is then transmitted by means of a communication module, e.g. via a data network which serves for remote reading of utility meters. The statistical parameter is selected from the second, third and fourth statistical moments of the pressures measured with the plurality of measurements of pressure. The pressure sensor device in a battery driven form can be placed at remote locations in a fluid pipe system to monitor pressure transients, e.g. in a water distribution system.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: October 1, 2019
    Assignee: KAMSTRUP A/S
    Inventors: Anders Skallebæk, Jens Lykke Sørensen, Kristian Rokkjær
  • Publication number: 20190285587
    Abstract: A turbidity measurement device for measuring turbidity of a fluid flowing in a flow tube. A first transducer transmits ultrasonic signals through the fluid in the turbidity measurement section so as to provide a first ultrasonic standing wave between the first and second section ends. A receiver transducer receives the ultrasonic scattered response from particles in the fluid flowing through the turbidity measurement section. A control circuit operates the transducers and generates a signal indicative of the turbidity of the fluid in response to signals received from the receiver transducer. Preferably, the device may comprise a second transducer for generating a second ultrasonic standing wave with the same frequency, and further the two transducers may be used to generate a measure of flow rate by means of known ultrasonic techniques. This flow rate may be used in the calculation of a measure of turbidity.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, Sune Hoveroust Dupont
  • Patent number: 10379084
    Abstract: A turbidity measurement device for measuring turbidity of a fluid flowing in a flow tube. A first transducer transmits ultrasonic signals through the fluid in the turbidity measurement section so as to provide a first ultrasonic standing wave between the first and second section ends. A receiver transducer receives the ultrasonic scattered response from particles in the fluid flowing through the turbidity measurement section. A control circuit operates the transducers and generates a signal indicative of the turbidity of the fluid in response to signals received from the receiver transducer. Preferably, the device may comprise a second transducer for generating a second ultrasonic standing wave with the same frequency, and further the two transducers may be used to generate a measure of flow rate by means of known ultrasonic techniques. This flow rate may be used in the calculation of a measure of turbidity.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 13, 2019
    Assignee: Kamstrup A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, Sune Hoveroust Dupont
  • Publication number: 20190219429
    Abstract: Ultrasonic flowmeter for measuring the flowrate of a fluid based on transit times of opposite propagating ultrasonic wave packets, including two ultrasonic transducers arranged at a flow tube for transmitting and receiving the ultrasonic wave packets through a fluid; a control circuit configured for operating the ultrasonic transducers to transmit and receive co-propagating and counter-propagating ultrasonic wave packets, and to determine transit times between transmission and reception of the ultrasonic wave packets; wherein the control circuit is further configured to continuously determine the flowrate of the fluid based on sequential application of separate flow measurement sequences and flow estimation sequences, the flow measurement sequence including transmitting and receiving a co-propagating wave packet and a counter-propagating wave packet, determining a transit time difference between the co-propagating and the counter-propagating wave packets, determining the speed of sound in the fluid, and calcu
    Type: Application
    Filed: September 19, 2017
    Publication date: July 18, 2019
    Inventors: Søren Tønnes Nielsen, Jens Lykke Sørensen, Paul Martin Bendixen
  • Publication number: 20190033261
    Abstract: A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc.
    Type: Application
    Filed: July 4, 2016
    Publication date: January 31, 2019
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, René Gajda Kristensen, Martin Christian Høj Petersen
  • Publication number: 20180188210
    Abstract: A turbidity measurement device for measuring turbidity of a fluid flowing in a flow tube. A first transducer transmits ultrasonic signals through the fluid in the turbidity measurement section so as to provide a first ultrasonic standing wave between the first and second section ends. A receiver transducer receives the ultrasonic scattered response from particles in the fluid flowing through the turbidity measurement section. A control circuit operates the transducers and generates a signal indicative of the turbidity of the fluid in response to signals received from the receiver transducer. Preferably, the device may comprise a second transducer for generating a second ultrasonic standing wave with the same frequency, and further the two transducers may be used to generate a measure of flow rate by means of known ultrasonic techniques. This flow rate may be used in the calculation of a measure of turbidity.
    Type: Application
    Filed: July 1, 2016
    Publication date: July 5, 2018
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen, Sune Hoveroust Dupont
  • Patent number: 9733112
    Abstract: The invention relates to a method of operating an ultrasonic flow meter by digitally sampling received signals. Acoustic wave packets are transmitted through a measuring distance in opposite directions, and the received signals are digitized at a sampling frequency being below the Nyquist-limit of two times the signal frequency of the wave packet to generate digitized under-sampled signals 31. From the digitized under-sampled signals, the difference in propagation time along the measuring distance is determined.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: August 15, 2017
    Assignee: Kamstrup A/S
    Inventors: Jens Lykke Sørensen, Paul Martin Bendixen
  • Patent number: 9714858
    Abstract: A consumption meter is provided with a conductive feed through for external communication equipment. The meter comprises a housing (104) which forms a closed compartment when an opening of the housing is closed with a cover (106). The compartment includes a communication module (204) and the conductive feed through comprises at least one conductive path (202, 408) from the communication module (204) to an outside part of the meter (102), which outside part is subject to ambient conditions. The path is provided via the opening of the housing and a sealing means (210) in the opening of the housing is used to seal against a first surface (308) of the conductive path when the cover is attached to the housing.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: July 25, 2017
    Assignee: KAMSTRUP A/S
    Inventors: Peter Schmidt Laursen, Søren Tønnes Nielsen, Jens Lykke Sørensen
  • Publication number: 20170122829
    Abstract: The invention provides a pressure sensor device arranged for measuring a pressure in a fluid pipe system, e.g. a utility network. A measurement system with a pressure sensor serves to measure pressure in the fluid pipe system, and a data processing unit determines at least one statistical parameter in response to a plurality of pressure measurements. Data packets with the statistical parameter is then transmitted by means of a communication module, e.g. via a data network which serves for remote reading of utility meters. The statistical parameter is selected from the second, third and fourth statistical moments of the pressures measured with the plurality of measurements of pressure. The pressure sensor device in a battery driven form can be placed at remote locations in a fluid pipe system to monitor pressure transients, e.g. in a water distribution system.
    Type: Application
    Filed: July 3, 2015
    Publication date: May 4, 2017
    Inventors: Anders Skallebæk, Jens Lykke Sørensen, Kristian Rokkjær
  • Patent number: 9182260
    Abstract: The invention relates to an ultrasonic flow meter arranged to measure a flow rate of a liquid, the flow meter comprises a flow tube 2, optionally a measurement insert, and two or more ultrasonic transducers 8 which are arranged in transducer inserts 20 to be inserted into the flow tube through openings in the flow tube. The transducer inserts are formed monolithically with the housing as a part of the bottom of the housing. The transducer inserts are in a mount position inserted through the openings in the flow tube to extend into the flow passage so that the surface 15 of the transducer inserts protrude into the flow passage. In this manner, gas bubbles, such as air bubbles, released from the flowing liquid will not rest in front of the transducer insert irrespectively of the orientation of the flow meter in the pipe installation.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: November 10, 2015
    Assignee: KAMSTRUP A/S
    Inventors: Søren Tønnes Nielsen, Peter Schmidt Laursen, Jens Lykke Sørensen
  • Publication number: 20150276454
    Abstract: A consumption meter is provided with a conductive feed through for external communication equipment. The meter comprises a housing (104) which forms a closed compartment when an opening of the housing is closed with a cover (106). The compartment includes a communication module (204) and the conductive feed through comprises at least one conductive path (202, 408) from the communication module (204) to an outside part of the meter (102), which outside part is subject to ambient conditions. The path is provided via the opening of the housing and a sealing means (210) in the opening of the housing is used to seal against a first surface (308) of the conductive path when the cover is attached to the housing.
    Type: Application
    Filed: November 21, 2013
    Publication date: October 1, 2015
    Inventors: Peter Schmidt Laursen, Søren Tønnes Nielsen, Jens Lykke Sørensen
  • Patent number: 9080906
    Abstract: The present invention discloses an ultrasonic flow meter comprising a generator circuit and a receiver circuit electrically separated from the generator circuit. The flow meter further comprises transducer switching means for controlled connection of ultrasonic transducers to either the generator circuit or to the receiver circuit. The output impedance of the generator circuit and the input impedance of the receiver circuit are controlled to be substantially zero.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: July 14, 2015
    Assignee: Kamstrup A/S
    Inventors: Jens Lykke Sørensen, Janus Honoré
  • Publication number: 20140318268
    Abstract: The invention relates to a method of operating an ultrasonic flow meter by digitally sampling received signals. Acoustic wave packets are transmitted through a measuring distance in opposite directions, and the received signals are digitized at a sampling frequency being below the Nyquist-limit of two times the signal frequency of the wave packet to generate digitized under-sampled signals 31. From the digitized under-sampled signals, the difference in propagation time along the measuring distance is determined.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 30, 2014
    Inventors: Jens Lykke Sørensen, Paul Martin Bendixen