Patents by Inventor Jens Mühlsteff

Jens Mühlsteff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138764
    Abstract: A device is for measuring a body parameter for a subject. The device comprises a sensor for measuring the body parameter, a housing element for positioning the sensor on a body part of the subject and an actuator system within the housing element for applying a pressure to the body part. The actuator system comprises two states, a first state based on the actuator system applying a first pressure to a first area of the body part and a second state based on the actuator system applying a second pressure to a second area of the body part. The device also comprises a controller configured to apply the first and second states at different times.
    Type: Application
    Filed: March 2, 2022
    Publication date: May 2, 2024
    Inventors: EDUARD GERARD MARIE PELSSERS, HANS WILLEM VAN KESTEREN, JENS MUEHLSTEFF, RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, ANTHONIUS PETRUS GERARDUS EMANUELS JANSSEN
  • Patent number: 11957454
    Abstract: The present invention relates to a device, system and method for detection of pulse and/or pulse-related information of a patient.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: April 16, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Kiran Hamilton J. Dellimore, Jens Muehlsteff, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Lars Schmitt
  • Patent number: 11931134
    Abstract: The present invention relates to a device, system and method for improved non-invasive and objective detection of pulse of a subject. The device comprises an input unit (2a) configured to obtain a series of images of a skin region of the subject and a processing unit (2b) for processing said series of images by detecting pulse-related motion of the skin within the skin region from the series of images, generating a motion map of the skin region from the detected pulse-related motion, comparing the generated motion map with an expected motion map of the skin region, and determining the presence of pulse within the skin region based on the comparison.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: March 19, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Kiran Hamilton J. Dellimore, Mukul Julius Rocque, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff
  • Publication number: 20240024194
    Abstract: According to an aspect, there is provided a system for providing cardiopulmonary resuscitation (CPR) decision support, the system comprising: a photoplethysmography (PPG) sensing unit configured to determine one or more PPG signals at a measurement site on a subject; a core unit comprising a user interface; a motion sensing unit configured to detect motions correlated to chest compressions during compression therapy on the subject; and a processing unit configured to: determine presence or absence of a spontaneous pulse based on the detected motions correlated to chest compressions during compression therapy on the subject and the one or more PPG signals; determine a recommendation to be provided based on the determination of presence or absence of a spontaneous pulse, wherein the recommendation is associated with CPR decision support; and control the user interface to output the determined recommendation.
    Type: Application
    Filed: December 10, 2021
    Publication date: January 25, 2024
    Inventors: Jens Muehlsteff, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jakob van de Laar, Hugo Veenstra, Anthonius Petrus Gerardus Emanuel Janssen
  • Publication number: 20240008748
    Abstract: According to an aspect, there is provided a method for determining information about an arterial property of an artery of a subject.
    Type: Application
    Filed: December 9, 2021
    Publication date: January 11, 2024
    Inventors: LAURA IOANA BOGATU, JENS MUEHLSTEFF, PIERRE WOERLEE
  • Publication number: 20230335265
    Abstract: An improved emergency response system includes a set of databases which relates to volunteer responders and patients, which is controlled by a central system computer. The system interacts with patients and volunteer responders through a wireless network to patient and volunteer communicator devices. The emergency response system calculates and provides a compensation to the volunteer responders based upon their on-duty time, proximity to enrolled patients, and optionally based upon their performance during training and cardiac rescue events.
    Type: Application
    Filed: April 24, 2023
    Publication date: October 19, 2023
    Inventors: Eric Grant Halsne, Bente De Lat, Dawn Blilie Jorgenson, Dennis E. Ochs, Jens Muehlsteff
  • Publication number: 20230263476
    Abstract: According to an aspect, there is provided a method of estimating the reliability of cardiac output, CO, measurements for a subject obtained using an arterial waveform analysis, AWA, technique. The AWA technique is calibrated using CO measurements obtained using a thermodilution CO measurement technique.
    Type: Application
    Filed: August 25, 2021
    Publication date: August 24, 2023
    Inventors: LAURA IOANA BOGATU, JENS MUEHLSTEFF
  • Patent number: 11678809
    Abstract: According to an aspect there is provided a method of determining a calibration parameter for a first blood pressure, BP, measurement device, the method comprising obtaining a first physiological characteristic measurement of a subject using the first BP measurement device, wherein the first BP measurement device is for obtaining physiological characteristic measurements of a physiological characteristic of the subject and for determining a BP measurement of the subject from the physiological characteristic measurements using the calibration parameter, wherein the first physiological characteristic measurement is obtained when a torso of the subject is in a first posture; obtaining a second physiological characteristic measurement of the subject using the first BP measurement device, wherein the second physiological characteristic measurement is obtained when the torso of the subject is in a second, different, posture; determining the change in the posture of the torso from the first posture to the second post
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 20, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Laurentia Johanna Huijbregts, Jens Muehlsteff, Lars Schmitt
  • Patent number: 11657910
    Abstract: An improved emergency response system includes a set of databases which relates to volunteer responders and patients, which is controlled by a central system computer. The system interacts with patients and volunteer responders through a wireless network to patient and volunteer communicator devices. The emergency response system calculates and provides a compensation to the volunteer responders based upon their on-duty time, proximity to enrolled patients, and optionally based upon their performance during training and cardiac rescue events.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: May 23, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Eric Grant Halsne, Bente De Lat, Dawn Blilie Jorgenson, Dennis E. Ochs, Jens Muehlsteff
  • Patent number: 11583191
    Abstract: The present invention relates to an apparatus and method for determining blood pressure of a subject. To automatically trigger calibration the apparatus comprises a sensor signal input configured to obtain an arterial pulse wave sensor signal of the subject, a feature extraction unit configured to extract multiple features from the obtained arterial pulse wave sensor signal, an estimation unit configured to determine multiple blood pressure estimation values for individual extracted features and/or groups of extracted features and to determine the subject's blood pressure from said multiple blood pressure estimation values, a calibration unit configured to calibrate the estimation unit based on blood pressure reference measurements, and a calibration trigger unit configured to trigger calibration by the calibration unit if the multiple blood pressure estimation values diverge more than a divergence limit.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: February 21, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Lars Schmitt, Jens Muehlsteff, Erik Bresch, Xinchi Yu
  • Publication number: 20220395183
    Abstract: A control unit (12) and method for deriving a measure of arterial compliance based on an acquired arterial volume variation signal and measured diastolic and systolic blood pressure measurements. An oscillometric blood pressure measurement device is used to obtain a first signal representative of arterial volume variations and to obtain blood pressure measurements. Both are measured as an applied pressure to an artery is varied by the oscillometric blood pressure measurement device. The first signal is processed to compile a dataset of values, ?V, representative of the change in the arterial volume for set step changes, ?P, in applied pressure, at different transmural pressure values. This set of values is numerically integrated to derive a function of arterial volume with transmural pressure. This function is differentiated to thereby derive a function of arterial compliance with transmural pressure.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 15, 2022
    Inventors: LAURA IOANA BOGATU, JENS MUEHLSTEFF, ERIK BRESCH, MAARTEN PETRUS JOSEPH KUENEN, PIERRE WOERLEE
  • Patent number: 11412989
    Abstract: The present invention relates to a sensor device and method for obtaining physiological information of a subject. The sensor device comprises a PPG sensor (20), a motion sensor (30) and a device (10) for obtaining physiological information of the subject. The device comprises a processing unit (13) for generating an output signal carrying physiological information by (i) modulating the motion reference signal on a carrier signal of the first set of carrier signals or on a second carrier signal orthogonal to the first set of carrier signals to obtain a modulated signal and combining the modulated signal with the modulated PPG signals to obtain the output signal or (ii) demodulating the modulated PPG signals, performing artifact-reduction on the demodulated PPG signals using the motion reference signal to obtain artifact-reduced PPG signals and modulating the artifact-reduced PPG signals on the first set of carrier signals to obtain the output signal.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: August 16, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff, Olaf Such
  • Patent number: 11406562
    Abstract: A device, system, and method to control activation of oxygen saturation (SpO2) measurements in a cardio-pulmonary resuscitation (CPR) procedure. When compressions are present, only a PPG-based pulse detection algorithm is performed. When a spontaneous pulse has been detected and compressions are not detected during a predetermined time period, both a PPG-based pulse detection algorithm and an SpO2 measurement algorithm are performed. Depending on whether a chest compression is delivered manually or automatically, parameter selections for the compression detection algorithm, the PPG-based pulse detection algorithm, and the SpO2 measurement algorithm are adjusted accordingly.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: August 9, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jakob Van De Laar, Jens Muehlsteff
  • Publication number: 20220160579
    Abstract: There is provided an apparatus for use in measuring blood pressure. The apparatus comprises a processor configured to acquire a signal indicative of pressure oscillations detected inside a cuff inflated to pressurize a measurement site of a subject undergoing cardiopulmonary resuscitation. The pressure oscillations detected inside the cuff are indicative of a pulse of the subject. The processor is also configured to trigger a blood pressure measurement for the subject based on the pressure oscillations detected inside the cuff.
    Type: Application
    Filed: May 2, 2020
    Publication date: May 26, 2022
    Inventors: Maarten Petrus Joseph KUENEN, Ralph Wilhelm Christianus Gemma Rosa WIJSHOFF, Jens MUEHLSTEFF
  • Publication number: 20220142858
    Abstract: A device, system, and method to control activation of oxygen saturation (SpO2) measurements in a cardio-pulmonary resuscitation (CPR) procedure. When compressions are present, only a PPG-based pulse detection algorithm is performed. When a spontaneous pulse has been detected and compressions are not detected during a predetermined time period, both a PPG-based pulse detection algorithm and an SpO2 measurement algorithm are performed. Depending on whether a chest compression is delivered manually or automatically, parameter selections for the compression detection algorithm, the PPG-based pulse detection algorithm, and the SpO2 measurement algorithm are adjusted accordingly.
    Type: Application
    Filed: July 7, 2020
    Publication date: May 12, 2022
    Inventors: RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, JAKOB VAN DE LAAR, JENS MUEHLSTEFF
  • Patent number: 11298033
    Abstract: According to an aspect, there is provided a method of operating a non-invasive blood pressure, NIBP, monitor to measure the blood pressure of a subject, the NIBP monitor comprising a cuff, a pressure sensor for measuring the pressure in the cuff and for outputting a pressure signal representing the pressure in the cuff and a physiological parameter sensor, the method comprising obtaining a first measurement of a physiological parameter for the subject during inflation of the cuff, the first measurement being obtained from the pressure signal; obtaining a second measurement of the physiological parameter for the subject during inflation of the cuff, the second measurement being obtained from the physiological parameter sensor; comparing the first measurement and the second measurement; and estimating the reliability of a blood pressure measurement obtained by the NIBP monitor during inflation of the cuff based on the result of the step of comparing.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: April 12, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jens Muehlsteff, Teun Van Den Heuvel, Erik Bresch, Lars Schmitt, Dieter Woehrle
  • Publication number: 20220071496
    Abstract: The invention provides a control unit (12) and method for deriving a measure of arterial compliance based on an acquired arterial volume variation signal and an acquired pulse arrival time signal. An oscillometric blood pressure measurement device is used to acquire the arterial volume variation signal. Arterial volume and variation in pulse arrival time are both measured as an applied pressure to an artery are varied by the oscillometric blood pressure measurement device. The arterial volume signal is transformed into a corresponding signal representative of variation in peak-to-peak amplitude of the arterial volume. A first model fitting procedure is used to transform this peak-to-peak amplitude signal into a signal indicative of arterial volume as a function of transmural pressure. A second model fitting procedure is used to generate from the derived arterial volume vs. transmural pressure signal, and the derived pulse arrival time variation signal a final output measure of arterial compliance.
    Type: Application
    Filed: December 9, 2019
    Publication date: March 10, 2022
    Inventors: Laura Ioana BOGATU, Jens MUEHLSTEFF, Maarten Petrus Joseph KUENEN, Erik BRESCH
  • Patent number: 11272142
    Abstract: In a system and method for determining vital sign information of a subject the subject is illuminated with radiation, and radiation reflected from the subject is received. A region of interest is located in a first phase. Said illumination is controlled to locally illuminate, in a second phase, the located region of interest with radiation allowing determination of vital sign information. Finally, vital sign information of the subject is determined from the radiation reflected from said region of interest and detected in said second phase.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: March 8, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Erik Bresch, Jens Muehlsteff, Rolf Neumann, Mukul Julius Rocque, Willem Verkruijsse
  • Publication number: 20220022777
    Abstract: The present invention relates to a device, system, method and computer program for providing a skeleton model, wherein the device comprises a joint identification unit configured to obtain an image and corresponding image data of the patient comprising depth information and to generate joint location data by localizing one or more joints of the patient in said image, a pose estimation unit configured to generate pose estimation data by estimating a pose of the patient using the joint location data and/or the image data, a sensor location unit configured to obtain body location data, comprising information about a location of a sensor on the patients body, and image location data, comprising information about the location of the sensor in the image, and to generate sensor location data, assigning a sensor location in the image to a body location of the patient, based on the body location data and the image location data, an assignment unit configured to perform an assignment of the one or more joints to one or
    Type: Application
    Filed: September 19, 2019
    Publication date: January 27, 2022
    Inventors: Bishal LAMICHHANE, Jens MUEHLSTEFF
  • Publication number: 20210369207
    Abstract: There is provided an apparatus (12) for use with a wearable cuff (14). The wearable cuff (14) is for use in measuring blood pressure. The apparatus (12) is configured to acquire a plurality of pressure signals. Each of the plurality of pressure signals are indicative of a pressure in the wearable cuff (14) during a period for measuring blood pressure. The apparatus (12) is configured to, for each of the plurality of acquired pressure signals, determine a measure of a quality of the acquired pressure signal based on one or more parameters derived from artifacts identified in the acquired pressure signal. The apparatus (12) is also configured to determine a measure of a quality of the wearable cuff (14) based on the determined measures of the quality of the acquired pressure signals.
    Type: Application
    Filed: October 18, 2019
    Publication date: December 2, 2021
    Inventors: Bishal LAMICHHANE, Maarten Petrus Joseph KUENEN, Jens MUEHLSTEFF, Charles Christy MONROE, Lars SCHMITT