Patents by Inventor Jens Paulsen

Jens Paulsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180226631
    Abstract: A lithium transition metal oxide powder for a positive electrode material in a solid-state lithium ion battery, the powder consisting of particles having a core and a surface layer consisting of an inner and an outer layer, wherein the powder has a D50 between 35 and 60 ?m, wherein the core has the general formula LixCoO2 with 0.99<x<1.04 and wherein the inner surface layer comprises LiyNi1?a?bMnaCobO2, with 0<y<1, 0.3<a<0.8 and 0<b<0.3; and wherein the outer surface layer consists of discrete monolithic sub-micron sized particles having the general formula Li1+z(Ni1?m?nMnmCon)1?zO2, with 0?z?0.05, 0<m?0.50 and 0<n?0.70, preferably 0<n?0.30.
    Type: Application
    Filed: July 7, 2016
    Publication date: August 9, 2018
    Inventors: Jens PAULSEN, Xin XIA, Song-Yi HAN, Jing ZHANG
  • Patent number: 10044035
    Abstract: A lithium metal oxide powder for a cathode material in a rechargeable battery, comprising a core material and a surface layer, the core having a layered crystal structure consisting of the elements Li, a metal M and oxygen, wherein the metal M has the formula M=Co1?aM?a, with 0?a?0.05, wherein M? is selected from one or more metals of the group consisting of Al, Ga and B; and the surface layer comprising a mixture of the elements of the core material Li, M and oxygen, inorganic N-based oxides and a cubic phase oxide having a crystal structure with a Fd-3mS space group, wherein N is selected from one or more metals of the group consisting of Mg, Ti, Fe, Cu, Ca, Ba, Y, Sn, Sb, Na, Zn, Zr and Si.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: August 7, 2018
    Assignee: Umicore
    Inventors: Jens Paulsen, Maxime Blangero, Da-In Choi
  • Patent number: 10020495
    Abstract: The invention provides a cathode active material for use in a rechargeable battery, comprising a coated lithium nickel oxide powder or a coated lithium nickel manganese oxide powder, the powder being composed of primary particles provided with a glassy lithium silicate surface coating. A method for preparing the cathode active material comprises the steps of: providing a lithium transition metal based oxide powder, providing an alkali mineral compound comprising a Li2?xSiO3?0.5x compound, wherein 0<x<2, mixing the lithium transition metal based oxide powder and the alkali mineral compound to form a powder-mineral compound mixture, and heat treating the mixture at a temperature T whereby lithium is extracted from the surface of the metal based oxide powder to react with the alkali mineral compound, and a glassy surface coating is formed comprising a Li2?x?SiO3?0.5x? compound, wherein x<x?<2.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: July 10, 2018
    Assignee: UMICORE
    Inventors: Jens Paulsen, Randy De Palma, JiHye Kim
  • Publication number: 20180145320
    Abstract: A positive electrode for a rechargeable battery, comprising a lithium metal oxide powder having a layered crystal structure and having the formula LixTmyHmzO6, with 3?x?4.8, 0.60?y?2.0, 0.60?z?2.0, and x+y+z=6, wherein Tm is one or more transition metals of the group consisting of Mn, Fe, Co, Ni, and Cr; wherein Hm is one or more metals of the group consisting of Zr, Nb, Mo and W. The lithium metal oxide powder may comprise dopants and have the formula LixTmyHmzM?mO6— ?A?, wherein A is either one or more elements of the group consisting of F, S or N; and M? is either one or more metal of the group consisting of Ca, Sr, Y, La, Ce and Zr, with either ?>0 or m>0, ??0.05, m?0.05 and x+y+z+m=6.
    Type: Application
    Filed: April 15, 2016
    Publication date: May 24, 2018
    Inventors: Shinichi KUMAKURA, Jing ZHANG, Jens PAULSEN
  • Patent number: 9979021
    Abstract: A lithium metal oxide powder for use as a cathode material in a rechargeable battery, consisting of a core material and a surface layer, the core having a layered crystal structure consisting of the elements Li, a metal M and oxygen, wherein the Li content is stoichiometrically controlled, wherein the metal M has the formula M=Co1-aM?a, with 0?a?0.05, wherein M? is either one or more metals of the group consisting of Al, Ga and B; and the surface layer consisting of a mixture of the elements of the core material and inorganic N-based oxides, wherein N is either one or more metals of the group consisting of Mg, Ti, Fe, Cu, Ca, Ba, Y, Sn, Sb, Na, Zn, Zr and Si.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: May 22, 2018
    Assignee: Umicore
    Inventors: Jens Paulsen, Maxime Blangero, Da-In Choi
  • Patent number: 9972843
    Abstract: A carbonate precursor compound of a lithium manganese based oxide powder for a positive electrode of a rechargeable battery, the oxide having the general formula Li1+vM1?vO2, wherein ?0.03?v?0.25, wherein M is a composition comprising at least 50 mol % of manganese, and wherein the carbonate precursor compound has a secondary particle size D50 expressed in ?m, and a tap density TD expressed in g/cm3, with either 1?TD?(2.78*D50)/(D50+7.23) and the compound having a particle size distribution having a span S?1.8 with S=(D90?D10)/D50; or 1?TD?(2.78*D50)/(D50+7.50).
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: May 15, 2018
    Assignees: Umicore, Umicore Korea Ltd.
    Inventors: Randy De Palma, JiHye Kim, Kris Driesen, Jens Paulsen, Jin Hu
  • Publication number: 20180034045
    Abstract: This invention discloses a lithium metal oxide powder for a cathode material in a rechargeable battery, consisting of a core and a surface layer, the core having a layered crystal structure comprising the elements Li, M and oxygen, wherein M has the formula M=(Niz(Ni1/2Mn1/2)yCox)1-kAk, with 0.15?x?0.30, 0.20?z?0.55, x+y+z=1 and 0?k?0.1, wherein A is a dopant, wherein the Li content is stoichiometrically controlled with a molar ratio 0.95?Li:M?1.10; and wherein the surface layer comprises the elements Li, M? and oxygen, wherein M? has the formula M?=(Niz?(Ni1/2Mn1/2)y?Cox?)1-k?Ak?, with x?+y?+z?=1 and 0?k??0.1, and wherein y?/(y?+2z?)?1.1*[y/(y+2z)]. The surface layer may also comprise at least 3 mol % Al, the Al content in the surface layer 10 being determined by XPS.
    Type: Application
    Filed: January 20, 2016
    Publication date: February 1, 2018
    Inventors: Xin XIA, Jens PAULSEN, Shinichi KUMAKURA, Song-Yi HAN
  • Patent number: 9876226
    Abstract: Aluminum dry-coated and heat treated cathode material precursors. A particulate precursor compound for manufacturing an aluminum coatedlithium transition metal (M)-oxide powder usable as an active positive electrode material in lithium-ion batteries includes a transition metal (M)-oxide core and a non-amorphous aluminum oxide coating layercovering the core. By providing a heat treatment process for mixed metal precursors that may be combined with an aluminum dry-coating process, novel aluminum containing precursors that may be used to form high quality nickel based cathode materials are obtained. The aluminum dry-coated and heat treated precursors include particles have, compared to prior art precursors, relatively low impurity levels of carbonate and/or sulfide, and can be produced at lower cost.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: January 23, 2018
    Assignee: Umicore
    Inventors: Jens Paulsen, JiHye Kim, HeonPyo Hong
  • Publication number: 20180019464
    Abstract: A lithium metal oxide powder for a cathode material in a rechargeable battery, consisting of a core and a surface layer, the surface layer being delimited by an outer and an inner interface, the inner interface being in contact with the core, the core having a layered crystal structure comprising the elements Li, M and oxygen, wherein M has the formula M=(Niz(Ni1/2Mn1/2)yCox)1-kAk, with 0.15?x?0.30, 0.20?z?0.55, x+y+z=1 and 0<k?0.1, wherein the Li content is stoichiometrically controlled with a molar ratio 0.95?Li:M?1.10; wherein A is at least one dopant and comprises Al; wherein the core has an Al content of 0.3-3 mol % and a F content of less than 0.05 mol %; and wherein the surface layer has an Al content that increases continuously from the Al content of the core at the inner interface to at least 10 mol % at the outer interface, and a F content that increases continuously from less than 0.
    Type: Application
    Filed: January 20, 2016
    Publication date: January 18, 2018
    Inventors: Xin XIA, Jens PAULSEN, JiHye KIM, Song-Yi HAN
  • Publication number: 20170309909
    Abstract: A carbonate precursor compound for manufacturing a lithium metal (M)-oxide powder usable as an active positive electrode material in lithium-ion batteries, M comprising 20 to 90 mol % Ni, 10 to 70 mol % Mn and 10 to 40 mol % Co, the precursor further comprising a sodium and sulfur impurity, wherein the sodium to sulfur molar ratio (Na/S) is 0.4<Na/S<2. Theslithium metal (M)-oxide powder has a particle size distribution with 10 ?m?D50?20 ?m, a specific surface with 0.9?BET?5, the BET being expressed in g/cm2, the powder further comprises a sodium and sulfur impurity, wherein the sum (2* Nawt)+Swt of the sodium (Nawt) and sulfur (S wt) content expressed in wt % is more than 0.4 wt % and less than 1.6 wt %, and wherein the sodium to sulfur molar ratio (Na/S) is 0.4<Na/S<2.
    Type: Application
    Filed: September 30, 2015
    Publication date: October 26, 2017
    Applicants: Umicore Korea Ltd., Umicore
    Inventors: Jens PAULSEN, HeonPyo HONG, JinDoo OH
  • Publication number: 20170309894
    Abstract: A method for producing a M-carbonate precursor of a Li-M oxide cathode material in a continuous reactor, wherein M=NixMnyCozAn, A being a dopant, with x>0, y>0, 0?z?0.35, 0?n?0.02 and x+y+z+n=1, the method comprising the steps of: —providing a feed solution comprising Ni-, Mn-, Co- and A-ions, and having a molar metal content M? feed, —providing an ionic solution comprising either one or both of a carbonate and a bicarbonate solution, the ionic solution further comprising either one or both of Na- and K-ions, —providing a slurry comprising seeds comprising M?-ions and having a molar metal content M? seeds, wherein M?=Nix?Mny?Coz?A?n?, A? being a dopant, with 0?x??1, 0?y??1, 0?z??1, 0?n??1 and x?+y?+z?+n?=1, and wherein the molar ratio M? seeds/M? feed is between 0.001 and 0.
    Type: Application
    Filed: September 30, 2015
    Publication date: October 26, 2017
    Inventors: Jin HU, HeonPyo HONG, Jens PAULSEN, JinDoo OH, Daniël NELIS, Eric ROBERT
  • Patent number: 9748570
    Abstract: The invention relates to cathode materials for Li-ion batteries having a size dependent compositions. The lithium metal oxide powder has a general formula LiaNixCoyMnzM?mO2±eAf, with 0.9<a<1.1, 0.2?x?0.9, 0<y?0.4, 0<z?0.7, 0?m?0.35, e<0.02, 0?f?0.05 and 0.9<(x+y+z+m+f)<1.1; M? consisting of either one or more elements from the group Al, Mg, Ti, Cr, V, Fe and Ga; A consisting of either one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn. The powder has a particle size distribution defining a D10 and a D90; wherein either x1?x2?0.005; or z2?z1?0.005; or both x1?x2?0.005 and z2?z1?0.005; x1 and z1 being the values of x and z of particles having a particle size D90; and x2 and z2 being the values of x and z of particles having a particle size D10.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: August 29, 2017
    Assignee: Umicore
    Inventors: Randy De Palma, Jens Paulsen, JiHye Kim
  • Publication number: 20170225952
    Abstract: An olivine cathode material having the formula LiaFe1?x?y?zMnxD(y+z)(PO4)c, wherein a, c, x, y and z represent molar amounts, wherein D=Mg and/or Cr, wherein y represent the amount of Mg and z represents the amount of Cr, wherein 1.04<a<1.15; wherein 0.97<(2*c/(a+1))<1.07; wherein 0.6<x<1?y?z; wherein 0<y+z<0.1. These material show improved cathode properties in lithium based rechargeable batteries.
    Type: Application
    Filed: August 13, 2014
    Publication date: August 10, 2017
    Inventors: DaeHyun KIM, Jens PAULSEN, Jing ZHANG
  • Patent number: 9698418
    Abstract: The invention relates to cathode materials for Li-ion batteries in the quaternary phase diagram Li[Li1/3Mn2/3]O2—LiMn1/2Ni1/2O2—LiNiO2—LiCoO2, and having a high nickel content. Also a method to manufacture these materials is disclosed. The cathode material has a general formula Lia ((Niz(Ni1/2Mn1/2)yCox)1?kAk)2?aO2, wherein x+y+z=1, 0.1?x?0.4, 0.36?z?0.50, A is a dopant, 0?k?0.1, and 0.95?a?1.05, and having a soluble base content (SBC) within 10% of the equilibrium soluble base content.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 4, 2017
    Assignee: Umicore
    Inventors: Jens Paulsen, JiHye Kim
  • Patent number: 9614226
    Abstract: A lithium transition metal oxide powder for use in a rechargeable battery is disclosed, where the surface of the primary particles of said powder is coated with a first inner and a second outer layer, the second outer layer comprising a fluorine-containing polymer, and the first inner layer consisting of a reaction product of the fluorine-containing polymer and the primary particle surface. An example of this reaction product is LiF, where the lithium originates from the primary particles surface. Also as an example, the fluorine-containing polymer is either one of PVDF, PVDF-HFP or PTFE.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: April 4, 2017
    Assignee: Umicore
    Inventors: Jens Paulsen, Randy De Palma, HeonPyo Hong, KyuBo Kim
  • Patent number: 9614220
    Abstract: Disclosed is a cathode active material and a method to produce the same at low cost. The cathode powder comprises modified LiCoO2, and possibly a second phase which is LiM?O2 where M? is Mn, Ni, Co with a stoichiometric ratio Ni:Mn?1. The modified LiCoO2 is Ni and Mn bearing and has regions of low and high manganese content, where regions with high manganese content are located in islands on the surface. The cathode material has high cycling stability, a very high rate performance and good high temperature storage properties.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: April 4, 2017
    Assignee: Umicore
    Inventors: Jens Paulsen, Maxime Blangero
  • Publication number: 20170069907
    Abstract: A lithium metal oxide powder for use as a cathode material in a rechargeable battery, consisting of Li metal oxide core particles having a general formula Li1+d (Nix Mny Coz Zrk M?m)i?d 02±e Ar; wherein Al203 is attached to the surface of the core particles; wherein 0?d?0.08, 0.2?x?0.9, 0<y?0.7, 0<z?0.4, 0?m?0.02, 0<k?0.05, e<0.02, 0?f?0.02 and x+y+z?k+m=1; M? consisting of either one or more elements from the group Al, Mg, Ti, Cr, V, Fe and Ga; A consisting of either one or more elements from the group F, P, C, CI, S, Si, Ba, Y, Ca, B, Sn, Sb, Na and Zn; and wherein the Al203 content in the powder is between 0.05 and 1 wt %.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 9, 2017
    Inventors: Liang ZHU, Jens PAULSEN, Hyo Sun AHN, HeonPyo HONG
  • Patent number: 9543581
    Abstract: A particulate precursor compound for manufacturing an aluminum doped lithium transition metal (M)-oxide powder usable as an active positive electrode material in lithium-ion batteries includes a transition metal (M)-hydroxide or (M)-oxyhydroxide core and a non-amorphous aluminum oxide coating layer covering the core. By providing an aluminum dry-coating process where the particulate precursor core compound is mixed with alumina powder in one or more procedures, higher doping levels of aluminum compared to the known prior art may be achieved. The crystal structure of the alumina is maintained during the coating procedures and the core of each mixed transition metal precursor particle is surrounded by a coating layer containing crystalline alumina nano particles. The aluminum concentration in the particulate precursor decreases as the size of the core increases.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: January 10, 2017
    Assignee: Umicore
    Inventors: Jens Paulsen, JiHye Kim, HeonPyo Hong
  • Publication number: 20160365571
    Abstract: A method for preparing a positive electrode material for a rechargeable lithium battery, comprising the steps of: providing a Li metal (M) oxide electroactive material, providing an inorganic oxidizing chemical compound, providing a chemical that is a Li-acceptor, mixing the Li metal (M) oxide, the oxidizing compound and the Li-acceptor, and heating the mixture at a N temperature between 200 and 800° C. in an oxygen comprising atmosphere. In an embodiment the positive electrode material comprises a Li metal (M) oxide electroactive material, and between 0.15 and 5 wt % of a LiNaSO4 secondary phase. The Li metal oxide may have the general formula Li1+a?M1?aO2, with a?<a and 0.9?(1+a?)/(1?a)?1.15, and M?Ni1?x?yM?xCoy, with M??Mni?zAlz, 0?z?1, 0.1?y?0.4 and x+y?0.5.
    Type: Application
    Filed: February 25, 2015
    Publication date: December 15, 2016
    Inventors: Dae-Hyun KIM, Jens PAULSEN
  • Publication number: 20160268601
    Abstract: A lithium metal oxide powder for a cathode material in a rechargeable battery, comprising a core material and a surface layer, the core having a layered crystal structure consisting of the elements Li, a metal M and oxygen, wherein the metal M has the formula M=Co1-aM?a, with 0?a?0.05, wherein M? is selected from one or more metals of the group consisting of Al, Ga and B; and the surface layer comprising a mixture of the elements of the core material Li, M and oxygen, inorganic N-based oxides and a cubic phase oxide having a crystal structure with a Fd-3mS space group, wherein N is selected from one or more metals of the group consisting of Mg, Ti, Fe, Cu, Ca, Ba, Y, Sn, Sb, Na, Zn, Zr and Si.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 15, 2016
    Inventors: Jens PAULSEN, Maxime BLANGERO, Da-In CHOI