Patents by Inventor Jens Poppe

Jens Poppe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9287211
    Abstract: In sophisticated semiconductor devices, electronic fuses may be provided in the metallization system, wherein a superior two-dimensional configuration of the metal line, for instance as a helix-like configuration, may provide superior thermal conditions in a central line portion, which in turn may result in a more pronounced electromigration effect for a given programming current. Consequently, the size of the electronic fuse, at least in one lateral direction, and also the width of corresponding transistors connected to the electronic fuse, may be reduced.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: March 15, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Kurz, Jens Poppe, Matthias Kessler
  • Patent number: 8785300
    Abstract: An approach is provided for semiconductor devices including an anti-fuse structure. The semiconductor device includes a first metallization layer including a first portion of a first electrode and a second electrode, the second electrode being formed in a substantially axial plane surrounding the first portion of the first electrode, with a dielectric material in between the two electrodes. An ILD is formed over the first metallization layer, a second metallization layer including a second portion of the first electrode is formed over the ILD, and at least one via is formed through the ILD, electrically connecting the first and second portions of the first electrode. Breakdown of the dielectric material is configured to enable an operating current to flow between the second electrode and the first electrode in a programmed state of the anti-fuse structure.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: July 22, 2014
    Assignee: GlobalFoundries Inc.
    Inventors: Andreas Kurz, Jens Poppe
  • Patent number: 8653624
    Abstract: Metal fuses in semiconductor devices may be formed on the basis of additional mechanisms for obtaining superior electromigration in the fuse bodies. To this end, the compressive stress caused by the current-induced metal diffusion may be restricted or reduced in the fuse body, for instance, by providing a stress buffer region and/or by providing a dedicated metal agglomeration region. The concept may be applied to the metallization system and may also be used in the device level, when fabricating the metal fuse in combination with high-k metal gate electrode structures.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: February 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Christian Hennesthal, Oliver Aubel, Jens Poppe, Holger Pagel, Andreas Kurz
  • Patent number: 8610243
    Abstract: Disclosed herein is a metal e-fuse device that employs an intermetallic compound programming mechanism and various methods of making such an e-fuse device. In one example, a device disclosed herein includes a first metal line, a second metal line and a fuse element that is positioned between and conductively coupled to each of the first and second metal lines, wherein the fuse element is adapted to be blown by passing a programming current therethrough, and wherein the fuse element is comprised of a material that is different from a material of construction of at least one of the first and second metal lines.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: December 17, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Poppe, Andreas Kurz
  • Publication number: 20130307114
    Abstract: Metal fuses in semiconductor devices may be formed on the basis of additional mechanisms for obtaining superior electromigration in the fuse bodies. To this end, the compressive stress caused by the current-induced metal diffusion may be restricted or reduced in the fuse body, for instance, by providing a stress buffer region and/or by providing a dedicated metal agglomeration region. The concept may be applied to the metallization system and may also be used in the device level, when fabricating the metal fuse in combination with high-k metal gate electrode structures.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Jens Poppe, Oliver Aubel, Christian Hennesthal, Holger Pagel, Andreas Kurz
  • Publication number: 20130299940
    Abstract: An approach is provided for semiconductor devices including an anti-fuse structure. The semiconductor device includes a first metallization layer including a first portion of a first electrode and a second electrode, the second electrode being formed in a substantially axial plane surrounding the first portion of the first electrode, with a dielectric material in between the two electrodes. An ILD is formed over the first metallization layer, a second metallization layer including a second portion of the first electrode is formed over the ILD, and at least one via is formed through the ILD, electrically connecting the first and second portions of the first electrode. Breakdown of the dielectric material is configured to enable an operating current to flow between the second electrode and the first electrode in a programmed state of the anti-fuse structure.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Andreas KURZ, Jens POPPE
  • Patent number: 8507326
    Abstract: An approach is provided for semiconductor devices including an anti-fuse structure. The semiconductor device includes a first metallization layer including a first portion of a first electrode and a second electrode, the second electrode being formed in a substantially axial plane surrounding the first portion of the first electrode, with a dielectric material in between the two electrodes. An ILD is formed over the first metallization layer, a second metallization layer including a second portion of the first electrode is formed over the ILD, and at least one via is formed through the ILD, electrically connecting the first and second portions of the first electrode. Breakdown of the dielectric material is configured to enable an operating current to flow between the second electrode and the first electrode in a programmed state of the anti-fuse structure.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 13, 2013
    Assignee: Globalfoundries Inc.
    Inventors: Andreas Kurz, Jens Poppe
  • Publication number: 20130147008
    Abstract: Disclosed herein is a metal e-fuse device that employs an intermetallic compound programing mechanism and various methods of making such an e-fuse device. In one example, a device disclosed herein includes a first metal line, a second metal line and a fuse element that is positioned between and conductively coupled to each of the first and second metal lines, wherein the fuse element is adapted to be blown by passing a programming current therethrough, and wherein the fuse element is comprised of a material that is different from a material of construction of at least one of the first and second metal lines.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Jens Poppe, Andreas Kurz
  • Publication number: 20130062728
    Abstract: An approach is provided for semiconductor devices including an anti-fuse structure. The semiconductor device includes a first metallization layer including a first portion of a first electrode and a second electrode, the second electrode being formed in a substantially axial plane surrounding the first portion of the first electrode, with a dielectric material in between the two electrodes. An ILD is formed over the first metallization layer, a second metallization layer including a second portion of the first electrode is formed over the ILD, and at least one via is formed through the ILD, electrically connecting the first and second portions of the first electrode. Breakdown of the dielectric material is configured to enable an operating current to flow between the second electrode and the first electrode in a programmed state of the anti-fuse structure.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: GLOBALFOUNDERS Inc.
    Inventors: Andreas Kurz, Jens Poppe
  • Patent number: 8268679
    Abstract: In sophisticated integrated circuits, an electronic fuse may be formed such that an increased sensitivity to electromigration may be accomplished by including at least one region of increased current density. This may be accomplished by forming a corresponding fuse region as a non-linear configuration, wherein at corresponding connection portions of linear segments, the desired enhanced current crowding may occur during the application of the programming voltage. Hence, increased reliability and more space-efficient layout of the electronic fuses may be accomplished.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 18, 2012
    Assignee: Globalfoundries, Inc.
    Inventors: Oliver Aubel, Jens Poppe, Andreas Kurz, Roman Boschke
  • Publication number: 20110241162
    Abstract: In sophisticated semiconductor devices, electronic fuses may be provided in the metallization system, wherein a superior two-dimensional configuration of the metal line, for instance as a helix-like configuration, may provide superior thermal conditions in a central line portion, which in turn may result in a more pronounced electromigration effect for a given programming current. Consequently, the size of the electronic fuse, at least in one lateral direction, and also the width of corresponding transistors connected to the electronic fuse, may be reduced.
    Type: Application
    Filed: February 23, 2011
    Publication date: October 6, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Andreas Kurz, Jens Poppe, Matthias Kessler
  • Publication number: 20110156858
    Abstract: Metal fuses in semiconductor devices may be formed on the basis of additional mechanisms for obtaining superior electromigration in the fuse bodies. To this end, the compressive stress caused by the current-induced metal diffusion may be restricted or reduced in the fuse body, for instance, by providing a stress buffer region and/or by providing a dedicated metal agglomeration region. The concept may be applied to the metallization system and may also be used in the device level, when fabricating the metal fuse in combination with high-k metal gate electrode structures.
    Type: Application
    Filed: October 25, 2010
    Publication date: June 30, 2011
    Inventors: Jens Poppe, Oliver Aubel, Christian Hennesthal, Holger Pagel, Andreas Kurz
  • Publication number: 20100107403
    Abstract: In sophisticated integrated circuits, an electronic fuse may be formed such that an increased sensitivity to electromigration may be accomplished by including at least one region of increased current density. This may be accomplished by forming a corresponding fuse region as a non-linear configuration, wherein at corresponding connection portions of linear segments, the desired enhanced current crowding may occur during the application of the programming voltage. Hence, increased reliability and more space-efficient layout of the electronic fuses may be accomplished.
    Type: Application
    Filed: October 15, 2009
    Publication date: May 6, 2010
    Inventors: Oliver Aubel, Jens Poppe, Andreas Kurz, Roman Boschke