Patents by Inventor Jens RAUTENBERG
Jens RAUTENBERG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250035588Abstract: A method for operating an ultrasonic measuring device for measuring a property of a medium includes: an arrangement of at least two pair of ultrasonic transducers for emitting and receiving ultrasonic signals across a signal path through a fluid; a holding apparatus having a wall in contact with the medium and a flat wall section for holding the ultrasonic transducers; an electronic circuit configured to operate the ultrasonic transducers and to provide measured values of the property, wherein the ultrasonic transducers form Lamb oscillations in the respectively associated wall, wherein at least two pair of the at least two pair of ultrasonic transducers each excite and capture different modes of Lamb oscillations, wherein the different modes are excited in groups, wherein a time delay between temporally adjacent emissions of ultrasonic signals is shorter than a shortest propagation time of the ultrasonic signals between associated ultrasonic transducers.Type: ApplicationFiled: November 21, 2022Publication date: January 30, 2025Inventors: Jens Rautenberg, Achim Stark, Stefan Rüger, Klaus Beringer, Rudolf Braun, Oliver Berberig, Michael Münch
-
Publication number: 20240393154Abstract: A method for operating an ultrasonic measuring device, which includes: an arrangement of ultrasonic transducers for emitting and receiving ultrasonic signals along at least two signal paths through a fluid, wherein the arrangement is held by a holding apparatus having at least one wall, wherein sections of the signal paths run through at least one of the at least one wall, wherein signal path sections of at least two signal paths in the fluid are of different length; and an electronic measuring/operating circuit configured to perform the method of, in a first method step, comparing intensities of ultrasonic signals along signal paths having signal path sections of different length in the fluid and, in a second method step, determining a damping property of the fluid and an acoustic coupling property between the wall and the fluid therefrom.Type: ApplicationFiled: August 17, 2022Publication date: November 28, 2024Inventors: Oliver Berberig, Andreas Berger, Sascha Grunwald, Klaus Beringer, Rudolf Braun, Stefan Natterer, Michael Münch, Jens Rautenberg
-
Patent number: 11982647Abstract: An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.Type: GrantFiled: December 10, 2019Date of Patent: May 14, 2024Assignee: Endress+Hauser Flowtec AGInventors: Oliver Berberig, Jens Rautenberg, Beat Kissling, Sascha Grunwald, Rudolf Braun, Achim Stark, Klaus Beringer, Stefan Rüger, Theo Gerald Hofmann
-
Publication number: 20230324207Abstract: An ultrasonic measuring device for measuring properties of a medium located in a measuring tube includes a measuring tube wall and a measuring tube lumen. The measuring tube wall has at least one acoustic region designed to be excited into Lamb oscillations. A pair of ultrasonic transducers are located in a coupling region and are designed to excite Lamb oscillations or to detect Lamb oscillations in the respective coupling regions. The device also includes an electronic measuring/operating circuit. A supporting device is designed to support at least parts of the acoustic region against media pressure, and at least one supporting member is designed to absorb forces generated by media pressure. The supporting member has at least one decoupling device which is designed to reduce ultrasonic input from at least one associated acoustic region into the supporting member, and vice versa.Type: ApplicationFiled: July 16, 2021Publication date: October 12, 2023Inventors: Oliver Berberig, Andreas Berger, Manuel Martini, Achim Stark, Rudolf Braun, Jens Rautenberg
-
Publication number: 20220091072Abstract: An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.Type: ApplicationFiled: December 10, 2019Publication date: March 24, 2022Inventors: Oliver Berberig, Jens Rautenberg, Beat Kissling, Sascha Grunwald, Rudolf Braun, Achim Stark, Klaus Beringer, Stefan Rüger, Theo Gerald Hofmann
-
Patent number: 10677757Abstract: The invention relates in particular to a method for determining physical, chemical, and/or biological properties of a medium (M) located in the interior (30) of a waveguide (3) using at least one acoustic wave which has propagated at least partly through the medium (M). According to the invention, a first wall section (31a) and a second wall section (31b) of the waveguide (3) are connected together via a connection piece (31c) such that a second surface wave (OW2) propagates to the first wall section (31a) at least partly via the connection piece (31c). One of the wall sections (31a, 31b) and/or the connection piece (31c) is provided with at least one reflective element (4) on which at least one pert of a: least one first surface wave (OW1) that is excited on the first wall section (31a) by incurs of a transmitter (SE) is reflected ss a third surface wave (OW1?).Type: GrantFiled: January 24, 2017Date of Patent: June 9, 2020Assignee: SENSACTION AGInventor: Jens Rautenberg
-
Patent number: 10605779Abstract: A method for determining physical and/or chemical properties of a medium on the basis of at least one first and one second acoustic wave, which each have at least partly propagated through the medium from at least one transmitter to at least one receiver, is provided. From receive signals generated at least two receivers a runtime difference of the acoustic waves and/or an absolute runtime of an acoustic wave is determined and by means of a determined runtime difference and/or a determined absolute runtime physical and/or chemical properties of the medium are determined, such as for example a mean flow velocity.Type: GrantFiled: February 12, 2016Date of Patent: March 31, 2020Assignee: SENSACTION AGInventors: Jens Rautenberg, Rudolf Braun, Achim Stark, Stefan Rueger
-
Patent number: 10551354Abstract: It is provide a method for determining at least one of physical, chemical and biological properties of a medium with the aid of at least two transmitter-receiver pairs and on the basis of at least one first and one second acoustic wave. The first acoustic wave has propagated at least in part between a first transmitter-receiver pair through the medium and the second acoustic wave has propagated at least in part between a second transmitter-receiver pair through the medium, wherein the medium adjoins an inner lateral surface of an elongate conduction element that is arched transversely to its direction of longitudinal extent.Type: GrantFiled: January 24, 2017Date of Patent: February 4, 2020Assignee: SENSACTION AGInventor: Jens Rautenberg
-
Device for determining properties of a medium comprising a damping element and/or open guide element
Patent number: 10451463Abstract: It is provided an apparatus for determining at least one of physical, chemical and biological properties of a medium, comprising an acoustic waveguide, which has a conduction element with an inner side that faces the medium and an outer side that lies opposite this inner side. The inner side facing the medium is curved in concave fashion and the outer side is curved in convex fashion and the waveguide with the conduction element curved in that way is configured such that a second surface wave coupling-in at the concave inner side propagates along a propagation direction to the receiver. At least one damping element lies downstream of the receiver in the propagation direction of the second surface wave, said damping element being arranged and configured to prevent surface waves propagating counter to the propagation direction of the at least one second surface wave from reaching the receiver.Type: GrantFiled: January 24, 2017Date of Patent: October 22, 2019Assignee: SENSACTION AGInventor: Jens Rautenberg -
Publication number: 20190033260Abstract: The invention relates in particular to a method for determining physical, chemical, and/or biological properties of a medium (M) located in the interior (30) of a waveguide (3) using at least one acoustic wave which has propagated at least partly through the medium (M). According to the invention, a first wall section (31a) and a second wall section (31b) of the waveguide (3) are connected together via a connection piece (31c) such that a second surface wave (OW2) propagates to the first wall section (31a) at least partly via the connection piece (31c). One of the wall sections (31a, 31b) and/or the connection piece (31c) is provided with at least one reflective element (4) on which at least one pert of a: least one first surface wave (OW1) that is excited on the first wall section (31a) by incurs of a transmitter (SE) is reflected ss a third surface wave (OW1?).Type: ApplicationFiled: January 24, 2017Publication date: January 31, 2019Applicant: SENSACTION AGInventor: Jens RAUTENBERG
-
Publication number: 20190033265Abstract: It is provide a method for determining at least one of physical, chemical and biological properties of a medium with the aid of at least two transmitter-receiver pairs and on the basis of at least one first and one second acoustic wave. The first acoustic wave has propagated at least in part between a first transmitter-receiver pair through the medium and the second acoustic wave has propagated at least in part between a second transmitter-receiver pair through the medium, wherein the medium adjoins an inner lateral surface of an elongate conduction element that is arched transversely to its direction of longitudinal extent.Type: ApplicationFiled: January 24, 2017Publication date: January 31, 2019Applicant: SENSACTION AGInventor: Jens RAUTENBERG
-
DEVICE FOR DETERMINING PROPERTIES OF A MEDIUM COMPRISING A DAMPING ELEMENT AND/OR OPEN GUIDE ELEMENT
Publication number: 20190025101Abstract: It is provided an apparatus for determining at least one of physical, chemical and biological properties of a medium, comprising an acoustic waveguide, which has a conduction element with an inner side that faces the medium and an outer side that lies opposite this inner side. The inner side facing the medium is curved in concave fashion and the outer side is curved in convex fashion and the waveguide with the conduction element curved in that way is configured such that a second surface wave coupling-in at the concave inner side propagates along a propagation direction to the receiver. At least one damping element lies downstream of the receiver in the propagation direction of the second surface wave, said damping element being arranged and configured to prevent surface waves propagating counter to the propagation direction of the at least one second surface wave from reaching the receiver.Type: ApplicationFiled: January 24, 2017Publication date: January 24, 2019Applicant: SENSACTION AGInventor: Jens RAUTENBERG -
Publication number: 20160238570Abstract: A method for determining physical and/or chemical properties of a medium on the basis of at least one first and one second acoustic wave, which each have at least partly propagated through the medium from at least one transmitter to at least one receiver, is provided. From receive signals generated at least two receivers a runtime difference of the acoustic waves and/or an absolute runtime of an acoustic wave is determined and by means of a determined runtime difference and/or a determined absolute runtime physical and/or chemical properties of the medium are determined, such as for example a mean flow velocity.Type: ApplicationFiled: February 12, 2016Publication date: August 18, 2016Inventors: Jens RAUTENBERG, Rudolf BRAUN, Achim STARK, Stefan RUEGER