Patents by Inventor Jens RAUTENBERG

Jens RAUTENBERG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250035588
    Abstract: A method for operating an ultrasonic measuring device for measuring a property of a medium includes: an arrangement of at least two pair of ultrasonic transducers for emitting and receiving ultrasonic signals across a signal path through a fluid; a holding apparatus having a wall in contact with the medium and a flat wall section for holding the ultrasonic transducers; an electronic circuit configured to operate the ultrasonic transducers and to provide measured values of the property, wherein the ultrasonic transducers form Lamb oscillations in the respectively associated wall, wherein at least two pair of the at least two pair of ultrasonic transducers each excite and capture different modes of Lamb oscillations, wherein the different modes are excited in groups, wherein a time delay between temporally adjacent emissions of ultrasonic signals is shorter than a shortest propagation time of the ultrasonic signals between associated ultrasonic transducers.
    Type: Application
    Filed: November 21, 2022
    Publication date: January 30, 2025
    Inventors: Jens Rautenberg, Achim Stark, Stefan Rüger, Klaus Beringer, Rudolf Braun, Oliver Berberig, Michael Münch
  • Publication number: 20240393154
    Abstract: A method for operating an ultrasonic measuring device, which includes: an arrangement of ultrasonic transducers for emitting and receiving ultrasonic signals along at least two signal paths through a fluid, wherein the arrangement is held by a holding apparatus having at least one wall, wherein sections of the signal paths run through at least one of the at least one wall, wherein signal path sections of at least two signal paths in the fluid are of different length; and an electronic measuring/operating circuit configured to perform the method of, in a first method step, comparing intensities of ultrasonic signals along signal paths having signal path sections of different length in the fluid and, in a second method step, determining a damping property of the fluid and an acoustic coupling property between the wall and the fluid therefrom.
    Type: Application
    Filed: August 17, 2022
    Publication date: November 28, 2024
    Inventors: Oliver Berberig, Andreas Berger, Sascha Grunwald, Klaus Beringer, Rudolf Braun, Stefan Natterer, Michael Münch, Jens Rautenberg
  • Patent number: 11982647
    Abstract: An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: May 14, 2024
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Oliver Berberig, Jens Rautenberg, Beat Kissling, Sascha Grunwald, Rudolf Braun, Achim Stark, Klaus Beringer, Stefan Rüger, Theo Gerald Hofmann
  • Publication number: 20230324207
    Abstract: An ultrasonic measuring device for measuring properties of a medium located in a measuring tube includes a measuring tube wall and a measuring tube lumen. The measuring tube wall has at least one acoustic region designed to be excited into Lamb oscillations. A pair of ultrasonic transducers are located in a coupling region and are designed to excite Lamb oscillations or to detect Lamb oscillations in the respective coupling regions. The device also includes an electronic measuring/operating circuit. A supporting device is designed to support at least parts of the acoustic region against media pressure, and at least one supporting member is designed to absorb forces generated by media pressure. The supporting member has at least one decoupling device which is designed to reduce ultrasonic input from at least one associated acoustic region into the supporting member, and vice versa.
    Type: Application
    Filed: July 16, 2021
    Publication date: October 12, 2023
    Inventors: Oliver Berberig, Andreas Berger, Manuel Martini, Achim Stark, Rudolf Braun, Jens Rautenberg
  • Publication number: 20220091072
    Abstract: An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.
    Type: Application
    Filed: December 10, 2019
    Publication date: March 24, 2022
    Inventors: Oliver Berberig, Jens Rautenberg, Beat Kissling, Sascha Grunwald, Rudolf Braun, Achim Stark, Klaus Beringer, Stefan Rüger, Theo Gerald Hofmann
  • Patent number: 10677757
    Abstract: The invention relates in particular to a method for determining physical, chemical, and/or biological properties of a medium (M) located in the interior (30) of a waveguide (3) using at least one acoustic wave which has propagated at least partly through the medium (M). According to the invention, a first wall section (31a) and a second wall section (31b) of the waveguide (3) are connected together via a connection piece (31c) such that a second surface wave (OW2) propagates to the first wall section (31a) at least partly via the connection piece (31c). One of the wall sections (31a, 31b) and/or the connection piece (31c) is provided with at least one reflective element (4) on which at least one pert of a: least one first surface wave (OW1) that is excited on the first wall section (31a) by incurs of a transmitter (SE) is reflected ss a third surface wave (OW1?).
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: June 9, 2020
    Assignee: SENSACTION AG
    Inventor: Jens Rautenberg
  • Patent number: 10605779
    Abstract: A method for determining physical and/or chemical properties of a medium on the basis of at least one first and one second acoustic wave, which each have at least partly propagated through the medium from at least one transmitter to at least one receiver, is provided. From receive signals generated at least two receivers a runtime difference of the acoustic waves and/or an absolute runtime of an acoustic wave is determined and by means of a determined runtime difference and/or a determined absolute runtime physical and/or chemical properties of the medium are determined, such as for example a mean flow velocity.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: March 31, 2020
    Assignee: SENSACTION AG
    Inventors: Jens Rautenberg, Rudolf Braun, Achim Stark, Stefan Rueger
  • Patent number: 10551354
    Abstract: It is provide a method for determining at least one of physical, chemical and biological properties of a medium with the aid of at least two transmitter-receiver pairs and on the basis of at least one first and one second acoustic wave. The first acoustic wave has propagated at least in part between a first transmitter-receiver pair through the medium and the second acoustic wave has propagated at least in part between a second transmitter-receiver pair through the medium, wherein the medium adjoins an inner lateral surface of an elongate conduction element that is arched transversely to its direction of longitudinal extent.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 4, 2020
    Assignee: SENSACTION AG
    Inventor: Jens Rautenberg
  • Patent number: 10451463
    Abstract: It is provided an apparatus for determining at least one of physical, chemical and biological properties of a medium, comprising an acoustic waveguide, which has a conduction element with an inner side that faces the medium and an outer side that lies opposite this inner side. The inner side facing the medium is curved in concave fashion and the outer side is curved in convex fashion and the waveguide with the conduction element curved in that way is configured such that a second surface wave coupling-in at the concave inner side propagates along a propagation direction to the receiver. At least one damping element lies downstream of the receiver in the propagation direction of the second surface wave, said damping element being arranged and configured to prevent surface waves propagating counter to the propagation direction of the at least one second surface wave from reaching the receiver.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: October 22, 2019
    Assignee: SENSACTION AG
    Inventor: Jens Rautenberg
  • Publication number: 20190033260
    Abstract: The invention relates in particular to a method for determining physical, chemical, and/or biological properties of a medium (M) located in the interior (30) of a waveguide (3) using at least one acoustic wave which has propagated at least partly through the medium (M). According to the invention, a first wall section (31a) and a second wall section (31b) of the waveguide (3) are connected together via a connection piece (31c) such that a second surface wave (OW2) propagates to the first wall section (31a) at least partly via the connection piece (31c). One of the wall sections (31a, 31b) and/or the connection piece (31c) is provided with at least one reflective element (4) on which at least one pert of a: least one first surface wave (OW1) that is excited on the first wall section (31a) by incurs of a transmitter (SE) is reflected ss a third surface wave (OW1?).
    Type: Application
    Filed: January 24, 2017
    Publication date: January 31, 2019
    Applicant: SENSACTION AG
    Inventor: Jens RAUTENBERG
  • Publication number: 20190033265
    Abstract: It is provide a method for determining at least one of physical, chemical and biological properties of a medium with the aid of at least two transmitter-receiver pairs and on the basis of at least one first and one second acoustic wave. The first acoustic wave has propagated at least in part between a first transmitter-receiver pair through the medium and the second acoustic wave has propagated at least in part between a second transmitter-receiver pair through the medium, wherein the medium adjoins an inner lateral surface of an elongate conduction element that is arched transversely to its direction of longitudinal extent.
    Type: Application
    Filed: January 24, 2017
    Publication date: January 31, 2019
    Applicant: SENSACTION AG
    Inventor: Jens RAUTENBERG
  • Publication number: 20190025101
    Abstract: It is provided an apparatus for determining at least one of physical, chemical and biological properties of a medium, comprising an acoustic waveguide, which has a conduction element with an inner side that faces the medium and an outer side that lies opposite this inner side. The inner side facing the medium is curved in concave fashion and the outer side is curved in convex fashion and the waveguide with the conduction element curved in that way is configured such that a second surface wave coupling-in at the concave inner side propagates along a propagation direction to the receiver. At least one damping element lies downstream of the receiver in the propagation direction of the second surface wave, said damping element being arranged and configured to prevent surface waves propagating counter to the propagation direction of the at least one second surface wave from reaching the receiver.
    Type: Application
    Filed: January 24, 2017
    Publication date: January 24, 2019
    Applicant: SENSACTION AG
    Inventor: Jens RAUTENBERG
  • Publication number: 20160238570
    Abstract: A method for determining physical and/or chemical properties of a medium on the basis of at least one first and one second acoustic wave, which each have at least partly propagated through the medium from at least one transmitter to at least one receiver, is provided. From receive signals generated at least two receivers a runtime difference of the acoustic waves and/or an absolute runtime of an acoustic wave is determined and by means of a determined runtime difference and/or a determined absolute runtime physical and/or chemical properties of the medium are determined, such as for example a mean flow velocity.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 18, 2016
    Inventors: Jens RAUTENBERG, Rudolf BRAUN, Achim STARK, Stefan RUEGER