Patents by Inventor Jens Stefan Schneider

Jens Stefan Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8906214
    Abstract: A sensor element that may include a contamination-resistant coating on at least a portion thereof. The coating may include gamma alumina and a high temperature binder such as magnesium titanate. A sensor element that may include a contamination-resistant coating on at least a portion thereof. The coating may include gamma alumina, a high temperature binder such as magnesium titanate, and boehmite alumina. A method of making a contamination-resistant sensor element that may include mixing gamma alumina and a high temperature binder such as magnesium titanate to form a mixture, applying the mixture to at least a portion of a sensor element, and temperature treating the mixture to form a contamination-resistant coating on the sensor element.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 9, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, James Richard Waldrop, Velma Viane Massey, Donald Stanley Frost, Jr.
  • Publication number: 20100264026
    Abstract: A contamination-resistant sensor element and methods for making the same are provided. A sensor element may include a contamination-resistant coating on at least a portion thereof. The coating may comprise gamma-delta alumina and lithium oxide and may have a thickness of about 100 to about 600 microns and a porosity of about 20 to about 70 percent. The method may include using gamma-delta alumina and lithium oxide to form a mixture, applying the mixture to at least a portion of a sensor element, and temperature treated the mixture to form a contamination-resistant coating on the surface of the measuring cell.
    Type: Application
    Filed: March 22, 2010
    Publication date: October 21, 2010
    Applicant: ROBERT BOSCH GMBH
    Inventors: Jens Stefan Schneider, James Richard Waldrop, Velma Viane Massey, Donald Stanley Frost, JR.
  • Publication number: 20090020424
    Abstract: A sensor element that may include a contamination-resistant coating on at least a portion thereof. The coating may include gamma alumina and a high temperature binder such as magnesium titanate. A sensor element that may include a contamination-resistant coating on at least a portion thereof. The coating may include gamma alumina, a high temperature binder such as magnesium titanate, and boehmite alumina. A method of making a contamination-resistant sensor element that may include mixing gamma alumina and a high temperature binder such as magnesium titanate to form a mixture, applying the mixture to at least a portion of a sensor element, and temperature treating the mixture to form a contamination-resistant coating on the sensor element.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 22, 2009
    Applicant: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, James Richard Waldrop, Velma Viane Massey, Donald Stanley Frost, JR.
  • Patent number: 7211180
    Abstract: A contamination-resistant sensor element and methods for making the same are provided. A sensor element may include a contamination-resistant coating on at least a portion thereof. The coating may comprise gamma-delta alumina and lithium oxide and may have a thickness of about 100 to about 600 microns and a porosity of about 20 to about 70 percent. The method may include using gamma-delta alumina and lithium oxide to form a mixture, applying the mixture to at least a portion of a sensor element, and temperature treated the mixture to form a contamination-resistant coating on the surface of the measuring cell.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: May 1, 2007
    Assignee: Robert Bosch Corporation
    Inventors: Jens Stefan Schneider, James Richard Waldrop, Velma Viane Massey, Donald Stanley Frost, Jr.
  • Patent number: 7061363
    Abstract: A passive, high-temperature-resistant resistor element for measuring temperature is provided, the resistor element having an essentially interior insulating layer and two exterior conducting layers of a ceramic composite structure; the conducting layers being connected to one another at the tip of the resistor element; and the ceramic composite structure including trisilicon tetranitride, a metal silicide, and yttrium oxide or trisilicon tetranitride, a metal silicide, and a matrix phase of SixOyCzNw, where x signifies 1–2, y signifies 0–2, and w signifies 0–2. A combination element of this resistor element and a sheathed type glow plug, for example, is also provided.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: June 13, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Albrecht Geissinger, Gert Lindemann, Jens Stefan Schneider, Wolfgang Dressler, Friederike Lindner, Ulrich Eisele, Frank Stanglmeier, Volker Rothacker, Christoph Kern, Thomas Moser
  • Patent number: 6953620
    Abstract: A coating system and a method for its manufacture are provided. An electrically conductive base coat and a porous overcoat lying over the base coat are arranged on a ceramic substrate. At least one additional deposited layer is arranged on the base coat in such a way that the additional layer is formed in the pores of the porous overcoat adjacent to the base coat. The additional layer is deposited either by currentless or electrolytic deposition. For electrolytic deposition of the additional layer, the ceramic substrate sintered with the base coat and the overcoat is submerged in an electrolytic bath and the base coat is connected as a cathode. The currentless deposition takes place from a solution of the metal to be deposited with the addition of a reducing agent.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: October 11, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, Frank Stanglmeier, Bernd Schumann
  • Patent number: 6942772
    Abstract: A sensor for determining a concentration of gas components in gas mixtures having a first measuring electrode (mixed potential electrode) which has little or no catalytic effect on the establishment of an equilibrium in the gas mixture and a second measuring electrode (equilibrium electrode) which catalyzes the establishment of an equilibrium in the gas mixture as well as a solid electrolyte that is conductive for oxygen ions arranged between the two measuring electrodes, with the two measuring electrodes being exposed to the gas mixture. At least the first measuring electrode (16) is a cermet electrode, where at least one metal oxide component of the cermet electrode is capable of reversible incorporation of oxygen.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: September 13, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, Gerhard Hoetzel, Bernd Schumann, Thomas Moser
  • Publication number: 20040154920
    Abstract: A contamination-resistant sensor element and methods for making the same are provided. A sensor element may include a contamination-resistant coating on at least a portion thereof. The coating may comprise gamma-delta alumina and lithium oxide and may have a thickness of about 100 to about 600 microns and a porosity of about 20 to about 70 percent. The method may include using gamma-delta alumina and lithium oxide to form a mixture, applying the mixture to at least a portion of a sensor element, and temperature treated the mixture to form a contamination-resistant coating on the surface of the measuring cell.
    Type: Application
    Filed: February 10, 2003
    Publication date: August 12, 2004
    Applicant: Robert Bosch Corporation
    Inventors: Jens Stefan Schneider, James Richard Waldrop, Velma Viane Massey, Donald Stanley Frost
  • Patent number: 6719950
    Abstract: An exhaust gas sensor includes a housing and a sensor element supported by the housing. The sensor element includes a support member having an exhaust side, a reference side, and an aperture extending through the support member between the exhaust side and the reference side. The sensor element further includes an exhaust-side electrode on the exhaust side of the support member. The exhaust-side electrode is electrically connected to a contact on the reference side of the support member via a lead extending through the aperture. The aperture is sealed around the lead such that gas cannot pass through the aperture. The support member is oriented substantially parallel to the flow of exhaust gases when the exhaust gas sensor is installed on a vehicle. The sensor further includes a contact pin in the housing that engages the contact and biases the sensor element against a portion of the housing.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: April 13, 2004
    Assignee: Robert Bosch Corporation
    Inventors: John Day, Jens Stefan Schneider, Harald Neumann, Heinrich Hipp
  • Publication number: 20040021548
    Abstract: A passive, high-temperature-resistant resistor element for measuring temperature is provided, the resistor element having an essentially interior insulating layer and two exterior conducting layers of a ceramic composite structure; the conducting layers being connected to one another at the tip of the resistor element; and the ceramic composite structure including trisilicon tetranitride, a metal silicide, and yttrium oxide or trisilicon tetranitride, a metal silicide, and a matrix phase of SixOyCzNw, where x signifies 1-2, y signifies 0-2, and w signifies 0-2. A combination element of this resistor element and a sheathed type glow plug, for example, is also provided.
    Type: Application
    Filed: April 11, 2003
    Publication date: February 5, 2004
    Inventors: Albrecht Geissinger, Gert Lindemann, Jens Stefan Schneider, Wolfgang Dressler, Friederike Lindner, Ulrich Eisele, Frank Stanglmeier, Volker Rothacker, Christoph Kern, Thomas Moser
  • Patent number: 6676818
    Abstract: For the reduction of internal stresses and formation of cracks caused thereby, an exhaust gas probe includes two measuring electrodes separated by a solid electrolyte layer made substantially of ZrO2 and a circuit-board conductor layer for electrically heating the solid electrolyte layer. The circuit-board conductor layer is firmly connected to the solid electrolyte layer via a first sealingly sintered insulating layer made of an Al2O3-containing material. A pore-forming material is added to the Al2O3-containing material before. sintering.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: January 13, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, Detlef Heimann, Hans-Joerg Renz, Harald Neumann, Bernd Schumann, Lothar Diehl
  • Patent number: 6613207
    Abstract: An electrochemical sensor for ascertaining gas concentrations in gases, particularly in exhaust gases of combustion engines, includes an oxygen-ion-conductive solid electrolyte which is provided with electrode layers arranged at a distance from one another and with at least one resistance heating element that is separated from the solid electrolyte by an electrical insulating layer, a foil binder layer being provided between the electrical insulating layer and the solid electrolyte. At least one electron-conductive intermediate layer is provided between the electrode-side electrical insulating layer and the adjacent solid electrolyte.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: September 2, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Claudio De La Prieta, Jens Stefan Schneider, Carsten Springhorn, Thomas Schulte, Olaf Jach, Ulrich Eisele, Carmen Schmiedel, Lothar Diehl
  • Publication number: 20030092191
    Abstract: An exhaust gas sensor includes a housing and a sensor element supported by the housing. The sensor element includes a support member having an exhaust side, a reference side, and an aperture extending through the support member between the exhaust side and the reference side. The sensor element further includes an exhaust-side electrode on the exhaust side of the support member. The exhaust-side electrode is electrically connected to a contact on the reference side of the support member via a lead extending through the aperture. The aperture is sealed around the lead such that gas cannot pass through the aperture. The support member is oriented substantially parallel to the flow of exhaust gases when the exhaust gas sensor is installed on a vehicle. The sensor further includes a contact pin in the housing that engages the contact and biases the sensor element against a portion of the housing.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 15, 2003
    Applicant: Robert Bosch Corporation
    Inventors: John Day, Jens Stefan Schneider, Harald Neumann, Heinrich Hipp
  • Patent number: 6524460
    Abstract: A method for defining the characteristics of metal electrodes of ceramic sensor elements, where the metal electrodes are deposited as layers and subjected to a subsequent annealing process. The aim is to provide a non-destructive, simple and economical method, capable of being automated, for performing an acceptance test in a specimen-specific manner on the sensor element. In the case of the test procedure proposed here, the quantity and distribution of gold deposited so as to be inaccessible in the protective layer, are indirectly determined. This is done by measuring the layer thickness during manufacturing of an electrode, in a before/after comparison, with the aid of an eddy-current measuring process where the electrode is placed in the magnetic circuit of a coil that is traversed by the flow of a high-frequency a.c. current, and the resulting ostensible inductance of the coil is measured using an LCR measuring unit. The coil can be wired as a resonant circuit with the aid of a capacitor.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: February 25, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Hansjoerg Hachtel, Jens Stefan Schneider, Thomas Moser
  • Publication number: 20030006875
    Abstract: Proposed is a passive, high-temperature-resistant resistor element for measuring temperature, the resistor element having an essentially interior insulating layer (9; 10) and two exterior conducting layers (8) of a ceramic composite structure; the conducting layers being connected to one another at the tip (11) of the resistor element; and the ceramic composite structure including trisilicon tetranitride, a metal silicide, and yttrium oxide or trisilicon tetranitride, a metal silicide, and a matrix phase of SixOyCzNw, where x signifies 1-2, y signifies 0-2, and w signifies 0-2. Further proposed is a combination element (3) of this resistor element and a sheathed type glow plug, for example.
    Type: Application
    Filed: January 7, 2002
    Publication date: January 9, 2003
    Inventors: Albrecht Geissinger, Gert Lindemann, Jens Stefan Schneider, Wolfgang Dressler, Friederike Lindner, Ulrich Eisele, Frank Stanglmeier, Volker Rothacker, Christoph Kern, Thomas Moser
  • Patent number: 6395161
    Abstract: A gas sensor and a method for its manufacture are described. The gas sensor has a solid electrolyte having at least one measuring electrode and one porous protective coating. The measuring electrode has an electrically conductive base layer and a further layer, the further layer god being deposited in the pores of the porous protective coating adjacent to the base layer via galvanic deposition. In order to deposit the further layer via galvanic deposition, the basic body, which has been fused with the base layer and the protective coating via vitrification, is immersed in a galvanizing bath, the base layer being connected as the cathode.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: May 28, 2002
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, Harald Neumann, Johann Riegel, Frank Stanglmeier, Bernd Schumann
  • Publication number: 20020023838
    Abstract: A gas sensor and a method for its manufacture are described. The gas sensor has a solid electrolyte (11) having at least one measuring electrode (15) and one porous protective coating (16). The measuring electrode (15) has an electrically conductive base layer (25) and a further layer (27), the further layer (27) being deposited in the pores of the porous protective coating (16) adjacent to the base layer (25) via galvanic deposition. In order to deposit the further layer (27) via galvanic deposition, the basic body (10), which has been fused with the base layer (25) and the protective coating (16) via vitrification, is immersed in a galvanizing bath, the base layer (25) being connected as the cathode.
    Type: Application
    Filed: March 23, 2000
    Publication date: February 28, 2002
    Inventors: JENS STEFAN SCHNEIDER, HARALD NEUMANN, JOHANN RIEGEL, FRANK STANGLMEIER, BERND SCHUMANN
  • Publication number: 20010038923
    Abstract: A coating system and a method for its manufacture are provided. An electrically conductive base coat and a porous overcoat lying over the base coat are arranged on a ceramic substrate. At least one additional deposited layer is arranged on the base coat in such a way that the additional layer is formed in the pores of the porous overcoat adjacent to the base coat. The additional layer is deposited either by currentless or electrolytic deposition. For electrolytic deposition of the additional layer, the ceramic substrate sintered with the base coat and the overcoat is submerged in an electrolytic bath and the base coat is connected as a cathode. The currentless deposition takes place from a solution of the metal to be deposited with the addition of a reducing agent.
    Type: Application
    Filed: July 18, 2001
    Publication date: November 8, 2001
    Inventors: Jens Stefan Schneider, Frank Stanglmeier, Bernd Schumann
  • Patent number: 6306457
    Abstract: A coating system and a method for its manufacture are provided. An electrically conductive base coat and a porous overcoat lying over the base coat are arranged on a ceramic substrate. At least one additional deposited layer is arranged on the base coat in such a way that the additional layer is formed in the pores of the porous overcoat adjacent to the base coat. The additional layer is deposited either by currentless or electrolytic deposition. For electrolytic deposition of the additional layer, the ceramic substrate sintered with the base coat and the overcoat is submerged in an electrolytic bath and the base coat is connected as a cathode. The currentless deposition takes place from a solution of the metal to be deposited with the addition of a reducing agent.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: October 23, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, Frank Stanglmeier, Bernd Schumann
  • Patent number: 6276191
    Abstract: An oxygen sensor for determining the oxygen concentration in the exhaust gas flow of an internal combustion engine. The sensor includes an outer electrode exposed to the exhaust side and a reference electrode exposed to the ambient air. In the sensor, a space adjacent to the reference electrode or surrounding the reference electrode has an adsorbing and/or absorbing agent, which is introduced, for example, in a loose powder packing or a multiple pellet packing. Other versions of the novel oxygen sensor also have an oxygen supplying material, such as, for example, Mn-oxide, Ba-oxide and/or Ce-oxide, to help promote combustion of exhaust gas components/pollutants and any residue chemicals left remaining from the sensor manufacturing process.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: August 21, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Jens Stefan Schneider, Harald Neumann, Frank Stanglmeier, Bernd Schumann, Thomas Moser