Patents by Inventor Jens Wiegert

Jens Wiegert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11769277
    Abstract: An imaging system includes a computed tomography (CT) imaging device (10) (optionally a spectral CT), an electronic processor (16, 50), and a non-transitory storage medium (18, 52) storing a neural network (40) trained on simulated imaging data (74) generated by Monte Carlo simulation (60) including simulation of at least one scattering mechanism (66) to convert CT imaging data to a scatter estimate in projection space or to convert an uncorrected reconstructed CT image to a scatter estimate in image space. The storage medium further stores instructions readable and executable by the electronic processor to reconstruct CT imaging data (12, 14) acquired by the CT imaging device to generate a scatter-corrected reconstructed CT image (42). This includes generating a scatter estimate (92, 112, 132, 162, 182) by applying the neural network to the acquired CT imaging data or to an uncorrected CT image (178) reconstructed from the acquired CT imaging data.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 26, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shiyu Xu, Peter Prinsen, Jens Wiegert, Ravindra Mohan Manjeshwar
  • Publication number: 20230248996
    Abstract: The present application describes a computing system, a computer readable medium, and/or related method for supporting decision making in adaptive therapy. An input interface of receives an input image. A machine learning module predicts, based at least in part on the input image, a dose distribution associated with a first planning technique or a first treatment modality. A comparator compares a planned dose distribution as per a current treatment plan with the predicted dose distribution, to obtain a comparison result. The comparison result enables a user to gauge whether an actual re-planning would yield a dosimetric benefit before committing time or computational resources.
    Type: Application
    Filed: July 5, 2021
    Publication date: August 10, 2023
    Inventors: MARIA LUIZA BONDAR, ROLF JÜRGEN WEESE, TORBJOERN VIK, TOM BROSCH, JENS WIEGERT, HARALD SEPP HEESE
  • Patent number: 11663756
    Abstract: An image processing system (IPS) and related method. The system (IPS) comprises an input interface (IN) for receiving an image (IM) of an object (OB) acquired by an imaging apparatus (IA). A kernel provider (KP) of the system (IPS) is configured to provide respective scatter kernels for at least two scatter types. A scatter correction module (SCM) of the system (IPS) is configured to perform a correction in the image based on the provided at least two kernels.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: May 30, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernd Menser, Peter Prinsen, Dirk Schaefer, Jens Wiegert
  • Patent number: 11383103
    Abstract: The invention relates to a system for assisting in evaluating a contour of an anatomic structure (22) with respect to a dose distribution corresponding to a treatment plan for a radiation therapy treatment of a patient. The system comprises an evaluation unit particularly configured to evaluate the dose distribution in varying distances from the contour of the anatomic structure (22) to determine at least one point where the evaluated dose distribution fulfills a predetermined condition, and to determine the distance between the at least one point and the contour and/or to visualize the at least one point to a user of the system.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 12, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Steffen Renisch, Hrishikesh Narayanrao Deshpande, Heinrich Schulz, Sven Kabus, Stéphane Allaire, Alfonso Agatino Isola, Christoph Neukirchen, Maria Luiza Bondar, Jens Wiegert
  • Publication number: 20220203124
    Abstract: The invention relates to a planning apparatus for planning a radiation therapy. A medical image, in which a target to be irradiated is indicated, is reformatted based on ray geometries to be used during the radiation therapy to be planned, resulting in several reformatted medical images. Radiation therapy parameters being indicative of intensities of rays 5 to be used for irradiating a target 4 are determined based on the reformatted medical images by using a neural network unit. This allows to determine high quality radiation therapy parameters and hence allows for an improved planning of a radiation therapy. In particular, radiation and absorptions physics can be captured better, which can lead to the improved quality.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 30, 2022
    Inventors: Nick FLAESCHNER, Harald Sepp HEESE, Maria Luiza BONDAR, Kay SUN, Jens WIEGERT, Rolf Juergen WEESE
  • Publication number: 20220193448
    Abstract: The invention relates a system for assisting in planning a radiation therapy treatment provided using a treatment plan comprising irradiation parameters for controlling a delivery of radiation. The system is configured to (i) receive a first dose distribution, (ii) obtain a first objective function, which depends upon at least one parameter and a dose distribution, (iii) determine a first value of the parameter such that the first objective function fulfills a predefined criterion when being evaluated for the first value of the parameter and for a second dose distribution derived from the first dose distribution, (iii) provide the first objective function in connection with the first value of the at least one parameter to a user for modifying the first objective function to generate a second objective function, and (v) determine the treatment plan using the second objective function. Further, the invention relates to a corresponding method and computer program.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 23, 2022
    Inventors: Rolf Juergen WEESE, Alfonso Agatino ISOLA, Maria Luiza BONDAR, Torbjoern VIK, Nick FLAESCHNER, Jens WIEGERT, Harald Sepp HEESE
  • Publication number: 20210192807
    Abstract: An image processing system (IPS) and related method. The system (IPS) comprises an input interface (IN) for receiving an image (IM) of an object (OB) acquired by an imaging apparatus (IA). A kernel provider (KP) of the system (IPS) is configured to provide respective scatter kernels for at least two scatter types. A scatter correction module (SCM) of the system (IPS) is configured to perform a correction in the image based on the provided at least two kernels.
    Type: Application
    Filed: May 28, 2019
    Publication date: June 24, 2021
    Inventors: BERND MENSER, PETER PRINSEN, DIRK SCHAEFER, JENS WIEGERT
  • Publication number: 20210162234
    Abstract: The invention relates to a system for assisting in evaluating a contour of an anatomic structure (22) with respect to a dose distribution corresponding to a treatment plan for a radiation therapy treatment of a patient. The system comprises an evaluation unit particularly configured to evaluate the dose distribution in varying distances from the contour of the anatomic structure (22) to determine at least one point where the evaluated dose distribution fulfills a predetermined condition, and to determine the distance between the at least one point and the contour and/or to visualize the at least one point to a user of the system.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 3, 2021
    Inventors: Rolf Jürgen WEESE, Steffen RENISCH, Hrishikesh Narayanrao DESHPANDE, Heinrich SCHULZ, Sven KABUS, Stéphane ALLAIRE, Alfonso Agatino ISOLA, Christoph NEUKIRCHEN, Maria Luiza BONDAR, Jens WIEGERT
  • Patent number: 10932730
    Abstract: Method for estimating radiation dose received by a tissue of interest during an imaging scan comprising: i, obtaining image data of a body region including the tissue of interest, ii. sub-dividing the image data into axial slices, comprising tissue axial slices and non-tissue axial slices, iii. determining a net amount of radiation dose emitted or received by each axial slice by combining scan parameters of each axial slice with pre-calculated amounts of radiation dose, iiii summing the net amounts of radiation dose of all the tissue axial slices to obtain a tissue dose.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: March 2, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jens Wiegert, Bernd Menser, Peter Prinsen
  • Patent number: 10937170
    Abstract: The present invention relates to an apparatus for adaptive contouring of a body part. It is described to provide (210) at least one image; wherein, the at least one image comprises a first image comprising image data of a body part. An initial automatic model based segmentation of image data of the body part in the first image is determined (220). Final segmentation data of the body part is determined (230) in response to a modification of the initial automatic model based segmentation. An updated model based segmentation can be applied (240) on the basis of the initial automatic model based segmentation and the final segmentation data.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: March 2, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christian Buerger, Jens Wiegert, Steffen Renisch
  • Publication number: 20200273214
    Abstract: An imaging system includes a computed tomography (CT) imaging device (10) (optionally a spectral CT), an electronic processor (16, 50), and a non-transitory storage medium (18, 52) storing a neural network (40) trained on simulated imaging data (74) generated by Monte Carlo simulation (60) including simulation of at least one scattering mechanism (66) to convert CT imaging data to a scatter estimate in projection space or to convert an uncorrected reconstructed CT image to a scatter estimate in image space. The storage medium further stores instructions readable and executable by the electronic processor to reconstruct CT imaging data (12, 14) acquired by the CT imaging device to generate a scatter-corrected reconstructed CT image (42). This includes generating a scatter estimate (92, 112, 132, 162, 182) by applying the neural network to the acquired CT imaging data or to an uncorrected CT image (178) reconstructed from the acquired CT imaging data.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 27, 2020
    Inventors: SHIYU XU, PETER PRINSEN, JENS WIEGERT, RAVINDRA MOHAN MANJESHWAR
  • Publication number: 20190251693
    Abstract: The present invention relates to an apparatus for adaptive contouring of a body part. It is described to provide (210) at least one image; wherein, the at least one image comprises a first image comprising image data of a body part. An initial automatic model based segmentation of image data of the body part in the first image is determined (220). Final segmentation data of the body part is determined (230) in response to a modification of the initial automatic model based segmentation. An updated model based segmentation can be applied (240) on the basis of the initial automatic model based segmentation and the final segmentation data.
    Type: Application
    Filed: September 21, 2017
    Publication date: August 15, 2019
    Inventors: Christian BUERGER, Jens WIEGERT, Steffen RENISCH
  • Publication number: 20180368785
    Abstract: Method for estimating radiation dose received by a tissue of interest during an imaging scan comprising: i. obtaining image data of a body region including the tissue of interest, ii. sub-dividing the image data into axial slices, comprising tissue axial slices and non-tissue axial slices, iii. determining a net amount of radiation dose emitted or received by each axial slice by combining scan parameters of each axial slice with pre-calculated amounts of radiation dose, iiii summing the net amounts of radiation dose of all the tissue axial slices to obtain a tissue dose.
    Type: Application
    Filed: December 16, 2016
    Publication date: December 27, 2018
    Inventors: Jens WIEGERT, Bernd MENSER, Peter PRINSEN
  • Patent number: 9839404
    Abstract: A method for extending initial image data of a subject for dose estimation includes obtaining first image data of the subject for dose calculation, wherein the first image data has a first field of view. The method further includes obtaining second image data for extending the field of view of the first image data. The second image data has a second field of view that is larger than the first field of view. The method further includes extending the first field of view based on the second image data, producing extended image data.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: December 12, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Heike Ruppertshofen, Cristian Lorenz, Jens Wiegert, Peter Prinsen, Roland Proksa
  • Patent number: 9406128
    Abstract: The invention relates to an apparatus (18) for calculating an x-ray dose distribution within an object for a computed tomography examination. A primary flux determination unit (15) determines firstly a primary flux distribution within the object, wherein then this determined primary flux distribution is used as an initial total flux distribution by a total flux determination unit (16) while applying a six-flux model algorithm. This allows the determination of the total flux distribution to start with a relatively good first approximation of the total flux distribution such that the six-flux model algorithm can determine the total flux distribution very fast. The determined total flux distribution is finally used by a dose distribution determination unit (17) for determining a total dose distribution. The apparatus allows therefore for a very fast determination of x-ray dose distributions for computed tomography examinations.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: August 2, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Prinsen, Jens Wiegert, Cristian Lorenz, Heike Ruppertshofen
  • Publication number: 20160206263
    Abstract: A method for extending initial image data of a subject for dose estimation includes obtaining first image data of the subject for dose calculation, wherein the first image data has a first field of view. The method further includes obtaining second image data for extending the field of view of the first image data. The second image data has a second field of view that is larger than the first field of view. The method further includes extending the first field of view based on the second image data, producing extended image data.
    Type: Application
    Filed: September 11, 2014
    Publication date: July 21, 2016
    Inventors: Heike RUPPERTSHOFEN, Cristian LORENZ, Jens WIEGERT, Peter PRINSEN, Roland PROKSA
  • Patent number: 9295443
    Abstract: A method and system for reducing localized artifacts in imaging data, such as motion artifacts and bone streak artifacts, are provided. The method includes segmenting the imaging data to identify one or more suspect regions in the imaging data near which localized artifacts are expected to occur, defining an artifact-containing region of interest in the imaging data around each suspect region, and applying a local bias field within the artifact-containing regions to correct for the localized artifacts.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: March 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alfonso Agatino Isola, Eberhard Sebastian Hansis, Jens Wiegert
  • Publication number: 20160035086
    Abstract: The invention relates to an apparatus (18) for calculating an x-ray dose distribution within an object for a computed tomography examination. A primary flux determination unit (15) determines firstly a primary flux distribution within the object, wherein then this determined primary flux distribution is used as an initial total flux distribution by a total flux determination unit (16) while applying a six-flux model algorithm. This allows the determination of the total flux distribution to start with a relatively good first approximation of the total flux distribution such that the six-flux model algorithm can determine the total flux distribution very fast. The determined total flux distribution is finally used by a dose distribution determination unit (17) for determining a total dose distribution. The apparatus allows therefore for a very fast determination of x-ray dose distributions for computed tomography examinations.
    Type: Application
    Filed: April 21, 2014
    Publication date: February 4, 2016
    Inventors: Peter PRINSEN, Jens WIEGERT, Cristian LORENZ, Heike RUPPERTSHOFEN
  • Publication number: 20160007948
    Abstract: A method and system for reducing localized artifacts in imaging data, such as motion artifacts and bone streak artifacts, are provided. The method includes segmenting the imaging data to identify one or more suspect regions in the imaging data near which localized artifacts are expected to occur, defining an artifact-containing region of interest in the imaging data around each suspect region, and applying a local bias field within the artifact-containing regions to correct for the localized artifacts.
    Type: Application
    Filed: February 18, 2013
    Publication date: January 14, 2016
    Inventors: Alfonso Agatino ISOLA, Eberhard Sebastian HANSIS, Jens WIEGERT
  • Patent number: 9140803
    Abstract: A method includes generating, via a dose estimator, a dose map indicative of an estimated dose deposited in a subject based on acquisition protocol parameter values of an acquisition protocol of an imaging system, and generating, via a noise estimator, at least one of a noise map indicative of an estimated image noise based on the acquisition protocol parameter values or a contrast-to-noise map based on the noise map and an attenuation map. The method further includes displaying, via a display, the dose and noise maps in a human readable format.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: September 22, 2015
    Assignee: Koninklijke Philps N.V.
    Inventors: Matthias Bertram, Jens Wiegert, Kevin M. Brown