Patents by Inventor Jeom-Soo Kim

Jeom-Soo Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220166014
    Abstract: Disclosed are a method for preparing an active material, the surface of which is modified, using a surface treatment solution and an active material prepared thereby, and more particularly, an active material in which the amount of impurities on the surface thereof is reduced and on the surface of which a metal oxide configured to cut off direct contact with an electrolyte is uniformly disposed by collectively performing both a washing process and a surface treatment process using a surface treatment solution having a novel composition.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 26, 2022
    Applicants: HYUNDAI MOTOR COMPANY, Kia Corporation, Dong-A University Research Foundation for Industry-Academy Cooperation
    Inventors: Sang Mok PARK, Ik Kyu KIM, Yeol Mae YEO, Seung Min OH, Sa Heum KIM, Yoon Sung LEE, Nam Hyeong KIM, Ji Eun LEE, Dong Jun KIM, Sung Ho BAN, Jeom Soo KIM, Seung Hyun KIM
  • Publication number: 20200350581
    Abstract: Disclosed is a positive active material for a rechargeable lithium battery including secondary particles of a nickel-based transition metal oxide composed of an inner portion and an outer portion, wherein the inner portion has a dense structure having a higher density than the outer portion, the secondary particles of the nickel-based transition metal oxide have a plurality of protruding portions on the surface thereof, and the positive active material has an area ratio of 25% to 30% occupied by the protruding portions calculated by Equation 1 based on a cross-section of the secondary particles of the nickel-based transition metal oxide.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 5, 2020
    Inventors: Jeom-Soo Kim, Byeong Cheol Min
  • Patent number: 10177379
    Abstract: A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 8, 2019
    Assignee: Hyundai Motor Company
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim
  • Publication number: 20170334724
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where lithium manganese fluorophosphate such as Li2MnPO4F can be used as an electrode material. Li2MnPO4F is prepared by chemical intercalation of lithium, and can be used as an electrode material, and a non-lithium containing material can then be used as an anode material for manufacturing of a full cell Furthermore, it is possible to provide a carbon coating for a cathode material for a lithium battery, which has improved electrical conductivity.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 23, 2017
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 9725321
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where lithium manganese fluorophosphate such as Li2MnPO4F can be used as an electrode material. Li2MnPO4F is prepared by chemical intercalation of lithium, and can be used as an electrode material, and a non-lithium containing material can then be used as an anode material for manufacturing of a full cell. Furthermore, it is possible to provide a carbon coating for a cathode material for a lithium battery, which has improved electrical conductivity.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 8, 2017
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 9543571
    Abstract: Disclosed are a precursor for a rechargeable lithium battery, a positive active material including the same, a preparation method thereof, and a rechargeable lithium battery including the positive active material. More particularly, the present invention relates to a precursor including a sheet-shaped plate having a thickness of about 1 nm to about 30 nm and that is represented by the following Chemical Formula 1. NixCoyMn1-x-y-zMz(OH)2??[Chemical Formula 1] In the above Chemical Formula 1, 0<x<1, 0?y<1, 0.5?1-x-y-z, and 0?z<1, and M is at least one kind of metal selected from the group consisting of Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, and Zr.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: January 10, 2017
    Assignee: KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Jun Ho Song, Young Jun Kim, Jeom-Soo Kim, Woo Suk Cho, Jae-Hun Kim, Jun Sung Lee, Jin Hwa Kim, Kyoung Joon Lee
  • Patent number: 9385371
    Abstract: A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 5, 2016
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim
  • Publication number: 20160156036
    Abstract: A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
    Type: Application
    Filed: January 11, 2016
    Publication date: June 2, 2016
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim
  • Patent number: 9287585
    Abstract: An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent; a lithium salt; and an additive including vinylene carbonate, fluoroethylene carbonate, and a nitrile-based compound represented by Formula 1: wherein n ranges from 1 to 12 and R1 and R2 are independently a halogen, a hydrogen, or an alkyl group. Further, the alkyl group can be CmH(2m+1), in which m ranges from 1 to 10. The electrolyte for a rechargeable lithium battery improves storage stability of the rechargeable lithium battery at a high temperature. And, a rechargeable lithium battery including the electrolyte has improved storage stability.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 15, 2016
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jong-Hwa Lee, In-Tae Mun, Sae-Weon Roh, So-Hyun Hur, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu
  • Publication number: 20150349339
    Abstract: The present invention relates to a cathode active material for a lithium secondary battery and a preparation method thereof, and particularly, to a cathode active material for a lithium secondary battery having improved battery characteristics because of manganese phosphate uniformly coated on the surface of a Ni-rich cathode active material, and a preparation method thereof. According to the present invention, because manganese phosphate is uniformly coated on the surface of the Ni-rich cathode active material, a side reaction of the electrolyte is inhibited and a lithium secondary battery having excellent power characteristics, high temperature cycle life characteristics, and thermal stability can be prepared.
    Type: Application
    Filed: February 15, 2013
    Publication date: December 3, 2015
    Applicant: KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Woo Suk CHO, Jun-Ho SONG, Jeom-Soo KIM, Tae-Eun YIM, Young-Jun KIM, Sang-Min KIM, Hyunsang CHO
  • Patent number: 9130213
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where a fluorophosphate of the formula LixNa2-xMnPO4F is used as an electrode material. LixNa2-xMnPO4F is prepared by partially substituting a sodium site with lithium through a chemical method. LixNa2-xMnPO4F prepared according to the invention provides a cathode material for a lithium battery that has improved electrochemical activity.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 8, 2015
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Sang Min Kim
  • Publication number: 20150093602
    Abstract: An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent; a lithium salt; and an additive including vinylene carbonate, fluoroethylene carbonate, and a nitrile-based compound represented by Formula 1: wherein n ranges from 1 to 12 and R1 and R2 are independently a halogen, a hydrogen, or an alkyl group. Further, the alkyl group can be CmH(2m+1), in which m ranges from 1 to 10. The electrolyte for a rechargeable lithium battery improves storage stability of the rechargeable lithium battery at a high temperature. And, a rechargeable lithium battery including the electrolyte has improved storage stability.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 2, 2015
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jong-Hwa Lee, In-Tae Mun, Sae-Weon Roh, So-Hyun Hur, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu
  • Patent number: 8953303
    Abstract: The present invention relates to a lithium ion capacitor having excellent capacitance characteristics and high energy density. More particularly, the present invention relates to a cathode active material for a lithium ion capacitor, which utilizes a lithium composite metal oxide having a large initial irreversible capacitance as a specific cathode additive in addition to a carbon-based material applied as a cathode active material, and a production method thereof, and a lithium ion capacitor including the same. According to the present invention, lithium can be electrochemically doped on an anode without using metal lithium, and the capacitance characteristics of a lithium ion capacitor and the safety of a lithium-doping process can be significantly improved.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 10, 2015
    Assignee: Korea Electronics Technology Institute
    Inventors: Young Jun Kim, Jeom-Soo Kim, Min Sik Park
  • Patent number: 8906559
    Abstract: An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent; a lithium salt; and an additive including vinylene carbonate, fluoroethylene carbonate, and a nitrile-based compound represented by Formula 1: wherein n ranges from 1 to 12 and R1 and R2 are independently a halogen, a hydrogen, or an alkyl group. Further, the alkyl group can be CmH(2m+1), in which m ranges from 1 to 10. The electrolyte for a rechargeable lithium battery improves storage stability of the rechargeable lithium battery at a high temperature. And, a rechargeable lithium battery including the electrolyte has improved storage stability.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jong-Hwa Lee, In-Tae Mun, Sae-Weon Roh, So-Hyun Hur, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu
  • Patent number: 8906254
    Abstract: Disclosed are a cathode material for a secondary battery, and a manufacturing method of the same. The cathode material includes a lithium manganese phosphate LiMnPO4/sodium manganese fluorophosphate Na2MnPO4F composite, in which the LiMnPO4 and Na2MnPO4F have different crystal structures. Additionally, the method of manufacturing the cathode material may be done in a single step through a hydrothermal synthesis, which greatly reduces the time and cost of production. Additionally, the disclosure provides that the electric conductivity of the cathode material may be improved through carbon coating, thereby providing a cathode material with excellent electrochemical activity.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Sa Heum Kim, Dong Gun Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Publication number: 20140356712
    Abstract: Disclosed are a precursor for a rechargeable lithium battery, a positive active material including the same, a preparation method thereof, and a rechargeable lithium battery including the positive active material. More particularly, the present invention relates to a precursor including a sheet-shaped plate having a thickness of about 1 nm to about 30 nm and that is represented by the following Chemical Formula 1. NixCOyMn1-x-y-zMz(OH)2??[Chemical Formula 1] In the above Chemical Formula 1, 0<x<1, 0?y<1, 0.5?1?x?y?z, and 0?z<1, and M is at least one kind of metal selected from the group consisting of Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, and Zr.
    Type: Application
    Filed: September 18, 2012
    Publication date: December 4, 2014
    Inventors: Jun Ho Song, Young Jun Kim, Jeom-Soo Kim, Woo Suk Cho, Jae-Hun Kim, Jun Sung Lee, Jin Hwa Kim, Kyoung Joon Lee
  • Publication number: 20140242463
    Abstract: The present invention provides a positive active material for a secondary lithium battery, a method of preparing the positive active material, and a secondary lithium battery including the positive active material, wherein the positive active material includes a lithium metal composite oxide core represented by the following Chemical Formula 1, and a coating layer including a fluorine compound and positioned at a shell of the lithium metal composite oxide core. LiwNixCoyMn1-x-y-zMzO2??[Chemical Formula 1] (1.2?w?1.5, 0<x<1, 0?y<1, 0.5?1-x-y-z, and M is at least one metal selected from the group consisting of Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, and Zr).
    Type: Application
    Filed: September 18, 2012
    Publication date: August 28, 2014
    Applicant: KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Jun Ho Song, Young Jun Kim, Jeom-Soo Kim, Woo Suk Cho, Jae-Hun Kim, Jin Hwa Kim
  • Patent number: 8808918
    Abstract: The rechargeable lithium battery of the present invention includes a positive electrode including a positive active material, a negative electrode including a negative active material, and a non-aqueous electrolyte. The positive active material includes a core and a coating layer formed on the core. The core is made of a material such as LiCo0.98M?0.02O2, and the coating layer is made of a material such as MxPyOz. The electrolyte solution includes a nitrile-based additive. The rechargeable lithium battery of the present invention shows higher cycle-life characteristics and longer continuous charging time at high temperature.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jeom-Soo Kim, Jong-Hwa Lee, Yong-Chul Park, Jae-Yul Ryu, So-Hyun Hur
  • Patent number: 8808915
    Abstract: The rechargeable lithium battery includes a positive electrode which includes a positive active material, a negative electrode, and an electrolyte which includes a non-aqueous organic solvent and a lithium salt. The positive active material includes a core including at least one of a compound represented by Formula 1 and a compound represented by Formula 2, and a surface-treatment layer which is formed on the core and includes a compound represented by Formula 3. The lithium salt includes LiPF6 and a lithium imide-based compound. LiaNibCocMndMeO2??(1) LihMn2MiO4??(2) M?xPyOz??(3) wherein each of M and M? is independently selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, a rare earth element, and combinations thereof, 0.95?a?1.1, 0?b?0.999, 0?c?0.999, 0?d?0.999, 0.001?e?0.2, 0.95?h?1.1, 0.001?i?0.2, 1?y?4, 0?y?7, and 2?z?30.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: So-Hyun Hur, Euy-Young Jung, Duck-Chul Hwang, Yong-Chul Park, Jong-Hwa Lee, Jeom-Soo Kim, Jae-Yul Ryu, Jin-Bum Kim
  • Patent number: 8802300
    Abstract: A rechargeable lithium battery including a positive electrode including a positive active material, a negative electrode including a negative active material, and a non-aqueous electrolyte including a non-aqueous organic solvent and a lithium salt. The positive electrode has an active-mass density of about 3.7 to 4.1 g/cc, and the non-aqueous electrolyte includes a nitrile-based compound additive, a non-aqueous organic solvent, and a lithium salt.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: August 12, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Hwa Lee, Duck-Chul Hwang, Jeom-Soo Kim, Yong-Chul Park, Jae-Yul Ryu, Euy-Young Jung, So-Hyun Hur