Patents by Inventor Jeong Ho Lyu

Jeong Ho Lyu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240020988
    Abstract: A driving environment is perceived based on sensor data obtained from a plurality of sensors mounted on the ADV, including detecting a traffic light, where the plurality of sensors includes at least one image sensor. A first sensor setting is applied to the at least one image sensor to capture a first frame, and a second sensor setting is applied to the at least one image sensor to capture a second frame. A color of the traffic light is determined based on sensor data of the at least one image sensor in the first frame. The ADV is controlled to drive autonomously according to the color of the traffic light determined based on sensor data of the at least one image sensor in the first frame and a driving environment perceived based on sensor data of the at least one image sensor in the second frame.
    Type: Application
    Filed: April 20, 2021
    Publication date: January 18, 2024
    Inventors: JEONG HO LYU, LINGCHANG LI
  • Patent number: 10134788
    Abstract: A CMOS photodiode device for use in a dual-sensitivity imaging pixel contains at least two areas of differential doping. Transistors are provided in electrical contact with these areas to govern operation of signals emanating from the photodiode on two channels, each associated with a different sensitivity to light. A plurality of such photodiodes may be incorporate into a shared arrangement forming a single pixel, in order to enhance the signals.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: November 20, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 9711546
    Abstract: An image sensor pixel includes a first photodiode and a second photodiode disposed in a semiconductor material. The first photodiode has a first doped region, a first lightly doped region, and a first highly doped region. The second photodiode has a second full well capacity substantially equal to a first full well capacity of the first photodiode, and includes a second doped region, a second lightly doped region, and a second highly doped region. The image sensor pixel also includes a first microlens optically coupled to direct a first amount of image light to the first photodiode, and a second microlens optically coupled to direct a second amount of image light to the second photodiode. The first amount of image light is larger than the second amount of image light.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: July 18, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 9666631
    Abstract: An image sensor pixel includes a first photodiode, a second photodiode, a first microlens, a second microlens, and a filter. The first and second photodiode are disposed adjacent to each other in a semiconductor material. The first photodiode has a first full well capacity that is substantially equal to a second full well capacity of the second photodiode. The first microlens is disposed over the first photodiode and the second microlens is disposed over the second photodiode. The second microlens is substantially identical to the first microlens. The filter is disposed between the second microlens and the second photodiode to reduce an intensity of the image light incident upon the second photodiode. The filter does not substantially affect the image light directed toward the first photodiode.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 30, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 9608019
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode and a second photodiode. The first photodiode include a first doped region, a first lightly doped region, and a first highly doped region disposed between the first doped region and the first lightly doped region. The second photodiode disposed in has a second full well capacity substantially equal to a first full well capacity of the first photodiode. The second photodiode includes a second doped region, a second lightly doped region, and a second highly doped region disposed between the second doped region and the second lightly doped region. A first aperture sizer is disposed above the second photodiode to limit image light received by the second photodiode to a second amount that is less than a first amount of image light received by the first photodiode.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 28, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Publication number: 20160181296
    Abstract: An image sensor pixel includes a first photodiode and a second photodiode disposed in a semiconductor material. The first photodiode has a first doped region, a first lightly doped region, and a first highly doped region. The second photodiode has a second full well capacity substantially equal to a first full well capacity of the first photodiode, and includes a second doped region, a second lightly doped region, and a second highly doped region. The image sensor pixel also includes a first microlens optically coupled to direct a first amount of image light to the first photodiode, and a second microlens optically coupled to direct a second amount of image light to the second photodiode. The first amount of image light is larger than the second amount of image light.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Publication number: 20160181297
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode and a second photodiode. The first photodiode include a first doped region, a first lightly doped region, and a first highly doped region disposed between the first doped region and the first lightly doped region. The second photodiode disposed in has a second full well capacity substantially equal to a first full well capacity of the first photodiode. The second photodiode includes a second doped region, a second lightly doped region, and a second highly doped region disposed between the second doped region and the second lightly doped region. A first aperture sizer is disposed above the second photodiode to limit image light received by the second photodiode to a second amount that is less than a first amount of image light received by the first photodiode.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 23, 2016
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 9324759
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode and a second photodiode. The first photodiode include a first doped region, a first lightly doped region, and a first highly doped region disposed between the first doped region and the first lightly doped region. The second photodiode has a second full well capacity substantially equal to a first full well capacity of the first photodiode. The second photodiode includes a second doped region, a second lightly doped region, and a second highly doped region disposed between the second doped region and the second lightly doped region. The first photodiode can be used to for measuring low light and the second photodiode can be used for measuring bright light.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 26, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Publication number: 20150333099
    Abstract: An image sensor pixel includes a first photodiode, a second photodiode, a first microlens, a second microlens, and a filter. The first and second photodiode are disposed adjacent to each other in a semiconductor material. The first photodiode has a first full well capacity that is substantially equal to a second full well capacity of the second photodiode. The first microlens is disposed over the first photodiode and the second microlens is disposed over the second photodiode. The first microlens is substantially identical to the first microlens. The filter is disposed between the second microlens and the second photodiode to reduce an intensity of the image light incident upon the second photodiode. The filter does not substantially affect the image light directed toward the first photodiode.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 19, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 9160958
    Abstract: An image sensor includes photosensitive regions, transfer transistors, and one or more shared charge-to-voltage mechanism. A method for reading out the image sensor includes enabling a first transfer transistor to transfer photo-generated charge from a first photosensitive region to a shared charge-to-voltage mechanism. The method also includes no more than partially enabling a second transfer transistor to partially turn on the second transfer transistor to increase a capacitance of the shared charge-to-voltage mechanism while the photo-generated charge is transferred from the first photosensitive region to the shared charge-to-voltage mechanism.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 13, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Publication number: 20150179695
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode and a second photodiode. The first photodiode include a first doped region, a first lightly doped region, and a first highly doped region disposed between the first doped region and the first lightly doped region. The second photodiode disposed in has a second full well capacity substantially equal to a first full well capacity of the first photodiode. The second photodiode includes a second doped region, a second lightly doped region, and a second highly doped region disposed between the second doped region and the second lightly doped region. The first photodiode can be used to for measuring low light and the second photodiode can be used for measuring bright light.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Applicant: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Publication number: 20150172579
    Abstract: An image sensor includes photosensitive regions, transfer transistors, and one or more shared charge-to-voltage mechanism. A method for reading out the image sensor includes enabling a first transfer transistor to transfer photo-generated charge from a first photosensitive region to a shared charge-to-voltage mechanism. The method also includes no more than partially enabling a second transfer transistor to partially turn on the second transfer transistor to increase a capacitance of the shared charge-to-voltage mechanism while the photo-generated charge is transferred from the first photosensitive region to the shared charge-to-voltage mechanism.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Patent number: 9007504
    Abstract: Circuitry to reduce signal noise characteristics in an image sensor. In an embodiment, a bit trace line segment is located between neighboring respective segments of a source follower power trace and an additional trace which is to remain at a first voltage level during a pixel cell readout time period. In another embodiment, for each such trace segment, a smallest separation between the trace segment and the respective neighboring other one of such trace segments is substantially equal to or less than some maximum length to provide for parasitic capacitance between the bit line trace and one or more other traces.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: April 14, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Publication number: 20150076330
    Abstract: A CMOS photodiode device for use in a dual-sensitivity imaging pixel contains at least two areas of differential doping. Transistors are provided in electrical contact with these areas to govern operation of signals emanating from the photodiode on two channels, each associated with a different sensitivity to light. A plurality of such photodiodes may be incorporate into a shared arrangement forming a single pixel, in order to enhance the signals.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 8817154
    Abstract: An image sensor pixel includes a photosensitive region and pixel circuitry. The photosensitive region accumulates an image charge in response to light incident upon the image sensor. The pixel circuitry includes a transfer-storage transistor, a charge-storage area, an output transistor, and a floating diffusion region. The transfer-storage transistor is coupled between the photosensitive region and the charge-storage area. The output transistor has a channel coupled between the charge-storage area and the floating diffusion region and has a gate tied to a fixed voltage potential. The transfer-storage transistor causes the image charge to transfer from the photosensitive region to the charge-storage area and to transfer from the charge-storage area to the floating diffusion region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: August 26, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Patent number: 8716768
    Abstract: A device includes a transistor including a source and a drain disposed in a substrate and a gate disposed above the substrate. The gate includes a first longitudinal member disposed above the source and the drain and running substantially parallel to a channel of the transistor. The first longitudinal member is disposed over a first junction isolation area. The gate also includes a second longitudinal member disposed above the source and the drain and running substantially parallel to the channel of the transistor. The second longitudinal member is disposed over a second junction isolation region. The gate also includes a cross member running substantially perpendicular to the channel of the transistor and connecting the first longitudinal member to the second longitudinal member. The cross member is disposed above and between the source and the drain.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: May 6, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 8686477
    Abstract: Pixel array structures to provide a ground contact for a CMOS pixel cell. In an embodiment, an active area of a pixel cell includes a photodiode disposed in a first portion of an active area, where a second portion of the active area extends from a side of the first portion. The second portion includes a doped region to provide a ground contact for the active area. In another embodiment, the pixel cell includes a transistor to transfer the charge from the photodiode, where a gate of the transistor is adjacent to the second portion and overlaps the side of the first portion.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: April 1, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Publication number: 20140063304
    Abstract: An image sensor pixel includes a photosensitive region and pixel circuitry. The photosensitive region accumulates an image charge in response to light incident upon the image sensor. The pixel circuitry includes a transfer-storage transistor, a charge-storage area, an output transistor, and a floating diffusion region. The transfer-storage transistor is coupled between the photosensitive region and the charge-storage area. The output transistor has a channel coupled between the charge-storage area and the floating diffusion region and has a gate tied to a fixed voltage potential. The transfer-storage transistor causes the image charge to transfer from the photosensitive region to the charge-storage area and to transfer from the charge-storage area to the floating diffusion region.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Patent number: 8642374
    Abstract: An image sensor is described in which the imaging pixels have reduced noise by blocking nitridation in selected areas. In one example, a method includes forming a first and second gate oxide layer over a substrate, forming a layer of photoresist over the first gate oxide layer, applying nitridation to the photoresist and the second gate oxide layer such that the first gate oxide layer is protected from the nitridation by the photoresist, and forming a polysilicon gate over the first and second gate oxide layers.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 4, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe, Howard Rhodes
  • Publication number: 20140027827
    Abstract: Pixel array structures to provide a ground contact for a CMOS pixel cell. In an embodiment, an active area of a pixel cell includes a photodiode disposed in a first portion of an active area, where a second portion of the active area extends from a side of the first portion. The second portion includes a doped region to provide a ground contact for the active area. In another embodiment, the pixel cell includes a transistor to transfer the charge from the photodiode, where a gate of the transistor is adjacent to the second portion and overlaps the side of the first portion.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Sohei Manabe, Jeong-Ho Lyu