Patents by Inventor Jeong-Hoon Nam

Jeong-Hoon Nam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230020305
    Abstract: An apparatus for manufacturing a semiconductor device and a method of manufacturing the apparatus, the apparatus including a heater configured to heat a target, and a coating layer, the coating layer including a ternary material of transition metal(M)-aluminum(Al)-nitrogen(N) represented by the following Chemical Formula: [Chemical Formula] MxAl1?xNy, wherein x and y satisfy the following relations: 0<x<1 and y?1.
    Type: Application
    Filed: May 4, 2022
    Publication date: January 19, 2023
    Inventors: Hwanyeol PARK, Kyung Nam KANG, Jeong Hoon NAM, Se Jin KYUNG, Dae Wee KONG, Tae-Min KIM
  • Patent number: 11336313
    Abstract: A data transmission circuit which is improved to be capable of supporting a data transmission mode appropriate for an interface or an application depending on the selection of an option. The data transmission circuit includes a pre-driver configured to output a first differential driving signal, a second differential driving signal and pre-emphasis control signals by using a first differential data signal, a second differential data signal and option signals; a main driver configured to output a first differential transmission signal and a second differential transmission signal by using the first differential driving signal and the second differential driving signal; and a pre-emphasis driver configured to perform pre-emphasis on the first differential transmission signal and the second differential transmission signal to different amplification degrees in a first mode and a second mode by the pre-emphasis control signals.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: May 17, 2022
    Assignee: Silicon Works Co., Ltd
    Inventors: Sang Hoon Paik, Jeong Hoon Nam, Yong Hwan Moon
  • Publication number: 20210091804
    Abstract: A data transmission circuit which is improved to be capable of supporting a data transmission mode appropriate for an interface or an application depending on the selection of an option. The data transmission circuit includes a pre-driver configured to output a first differential driving signal, a second differential driving signal and pre-emphasis control signals by using a first differential data signal, a second differential data signal and option signals; a main driver configured to output a first differential transmission signal and a second differential transmission signal by using the first differential driving signal and the second differential driving signal; and a pre-emphasis driver configured to perform pre-emphasis on the first differential transmission signal and the second differential transmission signal to different amplification degrees in a first mode and a second mode by the pre-emphasis control signals.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 25, 2021
    Applicant: Silicon Works Co., Ltd.
    Inventors: Sang Hoon Paik, Jeong Hoon Nam, Yong Hwan Moon
  • Patent number: 10082455
    Abstract: The present invention related to an apparatus for separating micro-nano scale particles based on microfluidic chromatography using surface acoustic waves, comprising: a piezoelectric substrate; a pair of transducers, which are patterned on the piezoelectric substrate and generate surface acoustic waves when electric energy is applied to the piezoelectric substrate; a microfluidic chip, which is mounted on the piezoelectric substrate and include a microfluidic channel disposed between the pair of transducers, wherein a fluid including micro-nano scale particles flows in the microfluidic channel; and a detection unit, which detects micro-nano scale particles separated by the surface acoustic waves while the micro-nano scale particles pass through the microfluidic channel, wherein forces of the surface acoustic waves generated by the pair of transducers are formed in a direction opposite to a fluid flow to generate flow resistance to the micro-nano scale particles which flows in the microfluidic channel.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: September 25, 2018
    Assignee: Korea University Research and Business Foundation
    Inventors: Se Hyun Shin, Jeong Hoon Nam
  • Patent number: 9927425
    Abstract: The present invention relates to an apparatus and method for testing a multi-function and a drug response of platelet based on a centrifugal microfluidics. The testing apparatus according to the present invention may include: a rotatable disk; a sample chamber arranged at the center of the disk such that a blood sample is accommodated therein; stirring chambers respectively connected to the sample chamber in multiple radial directions so as to introduce a shear flow in the blood sample; microchannels connected to the stirring chambers such that adhesion and cohesion of platelets occur during the movement of the blood sample; and a waste sample chamber in which the blood sample is accommodated after passing through the microchannels. According to the present invention, multiple drug tests can be performed on a single blood sample at one time in multiple channels such that multiple tests is possible with respect to complex platelet functions, and thus testing time is reduced and testing costs can be saved.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: March 27, 2018
    Assignee: Korea University Research and Business Foundation
    Inventors: Se Hyun Shin, Chae Seung Lim, Jeong Hoon Nam, Hyun Jung Lim
  • Publication number: 20150355167
    Abstract: The present invention relates to an apparatus and method for testing a multi-function and a drug response of platelet based on a centrifugal microfluidics. The testing apparatus according to the present invention may include: a rotatable disk; a sample chamber arranged at the center of the disk such that a blood sample is accommodated therein; stirring chambers respectively connected to the sample chamber in multiple radial directions so as to introduce a shear flow in the blood sample; microchannels connected to the stirring chambers such that adhesion and cohesion of platelets occur during the 44 movement of the blood sample; and a waste sample chamber in which the blood sample is accommodated after passing through the microchannels. According to the present invention, multiple drug tests can be performed on a single blood sample at one time in multiple channels such that multiple tests is possible with respect to complex platelet functions, and thus testing time is reduced and testing costs can be saved.
    Type: Application
    Filed: December 27, 2013
    Publication date: December 10, 2015
    Applicant: Korea University Research and Business Foundation
    Inventors: Se Hyun SHIN, Chae Seung LIM, Jeong Hoon NAM, Hyun Jung LIM
  • Publication number: 20150330887
    Abstract: The present invention related to an apparatus for separating micro-nano scale particles based on microfluidic chromatography using surface acoustic waves, comprising: a piezoelectric substrate; a pair of transducers, which are patterned on the piezoelectric substrate and generate surface acoustic waves when electric energy is applied to the piezoelectric substrate; a microfluidic chip, which is mounted on the piezoelectric substrate and include a microfluidic channel disposed between the pair of transducers, wherein a fluid including micro-nano scale particles flows in the microfluidic channel; and a detection unit, which detects micro-nano scale particles separated by the surface acoustic waves while the micro-nano scale particles pass through the microfluidic channel, wherein forces of the surface acoustic waves generated by the pair of transducers are formed in a direction opposite to a fluid flow to generate flow resistance to the micro-nano scale particles which flows in the microfluidic channel.
    Type: Application
    Filed: December 27, 2013
    Publication date: November 19, 2015
    Inventors: Se Hyun SHIN, Jeong Hoon NAM
  • Patent number: 7183214
    Abstract: In one embodiment, a semiconductor substrate is placed into a process chamber. A gas mixture including a silicon-containing gas, a fluorine-containing gas, an inert gas, and an oxygen gas is introduced into the chamber at a pressure range of from about 30 mTorr to about 90 mTorr. During this time, deposition and etching processes are concurrently performed using a plasma to form a high-density plasma (HDP) insulating layer on the semiconductor substrate. A ratio of deposition to etching is from about 3:1 to about 10:1. A ratio of a flow rate of the fluorine-containing gas to a flow rate of the silicon-containing gas is less than about 0.9.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: February 27, 2007
    Assignee: Samsung Electronics Co., Lgd.
    Inventors: Jeong-Hoon Nam, Jin-Ho Jeon
  • Publication number: 20060223321
    Abstract: In one embodiment, a semiconductor substrate is placed into a process chamber. A gas mixture including a silicon-containing gas, a fluorine-containing gas, an inert gas, and an oxygen gas is introduced into the chamber at a pressure range of from about 30 mTorr to about 90 mTorr. During this time, deposition and etching processes are concurrently performed using a plasma to form a high-density plasma (HDP) insulating layer on the semiconductor substrate. A ratio of deposition to etching is from about 3:1 to about 10:1. A ratio of a flow rate of the fluorine-containing gas to a flow rate of the silicon-containing gas is less than about 0.9.
    Type: Application
    Filed: September 22, 2005
    Publication date: October 5, 2006
    Inventors: Jeong-Hoon Nam, Jin-Ho Jeon