Patents by Inventor Jeong-sik KO

Jeong-sik KO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118028
    Abstract: An infrared heat source module is configured to minimize problems such as wrinkles or cracks in electrodes even if the patterns of a coated part and an uncoated part of the electrodes present in a current collector vary. The module improves a drying efficiency of the coated part of the current collector. An electrode using the infrared heat source module is manufactured by a process.
    Type: Application
    Filed: January 27, 2022
    Publication date: April 11, 2024
    Applicant: LG Energy Solution, Ltd.
    Inventors: Soon Sik Choi, Young Kuk Ko, Oh Cheol Kwon, Ji Hwan Kim, Jeong Won Lee
  • Publication number: 20240086603
    Abstract: A method of reinforcement learning of a neural network device for generating a verification vector for verifying a circuit design comprising a circuit block includes inputting a test vector to the circuit block, generating one or more rewards based on a coverage corresponding to the test vector, the coverage being determined based on a state transition of the circuit block based on the test vector, and applying the one or more rewards to a reinforcement learning.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Applicant: SAMSUNG ELECTRONICS CO, LTD.
    Inventors: In HUH, Jeong-hoon KO, Hyo-jin CHOI, Seung-ju KIM, Chang-wook JEONG, Joon-wan CHAI, Kwang-II PARK, Youn-sik PARK, Hyun-sun PARK, Young-min OH, Jun-haeng LEE, Tae-ho LEE
  • Patent number: 10283827
    Abstract: An electrochemical cell includes: a positive current collector in which an injection part, an ejection part and a passage are defined, where air including an oxygen is injected through the injection part, an exhaust gas is ejected though the ejection part ejecting, and the passage defines a single path which connects the injection part and the ejection part; and a unit cell disposed to be adjacent to the positive current collector. The unit cell includes a positive electrode layer, an active material of which is the oxygen gas, a negative electrode metal layer disposed on an opposite to the positive current collector with respect to the positive electrode layer, and an electrolyte membrane interposed between the positive electrode layer and the negative electrode metal layer.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: May 7, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae Joon Oh, Jeong Sik Ko, Hyuk Jae Kwon, Heung Chan Lee
  • Patent number: 9911990
    Abstract: A fuel cell stack includes a stack including a plurality of unit cells, which is stacked on one another in a predetermined direction, first and second end plates disposed on opposing ends of the stack, and a supply line disposed on a first surface of the first end plate to supply fuel or air to the plurality of unit cells, where an insertion hole is defined in a second surface of the first end plate to be adjacent to the supply line, and the second surface of the first end plate is substantially perpendicular to the first surface of the first end plate.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: March 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-won Song, Jin-ho Kim, Jeong-sik Ko, Ji-rae Kim
  • Publication number: 20170214105
    Abstract: An electrochemical cell includes: a positive current collector in which an injection part, an ejection part and a passage are defined, where air including an oxygen is injected through the injection part, an exhaust gas is ejected though the ejection part ejecting, and the passage defines a single path which connects the injection part and the ejection part; and a unit cell disposed to be adjacent to the positive current collector. The unit cell includes a positive electrode layer, an active material of which is the oxygen gas, a negative electrode metal layer disposed on an opposite to the positive current collector with respect to the positive electrode layer, and an electrolyte membrane interposed between the positive electrode layer and the negative electrode metal layer.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 27, 2017
    Inventors: Jae Joon OH, Jeong Sik KO, Hyuk Jae KWON, Heung Chan LEE
  • Patent number: 9506483
    Abstract: A fluid tube includes: a first fluid tube; a second fluid tube connected to the first fluid tube; and a flow velocity equalizer in the second fluid tube, where the flow velocity equalizer increases a uniformity of fluid flow passed therethrough, the second fluid tube is wider than the first fluid tube, and the flow velocity equalizer includes a diverging tube and a converging tube. The fluid tube may further include a fluid divider between the flow velocity equalizer and the first fluid tube. The diverging tube of the flow velocity equalizer may have a width increasing in a fluid flow direction, and the converging tube of the flow velocity equalizer may include a plurality of converging tubes having widths decreasing in the fluid flow direction.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: November 29, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-ho Kim, Tae-won Song, Ji-rae Kim, Jeong-sik Ko
  • Publication number: 20150093675
    Abstract: A fuel cell stack includes a stack including a plurality of unit cells, which is stacked on one another in a predetermined direction, first and second end plates disposed on opposing ends of the stack, and a supply line disposed on a first surface of the first end plate to supply fuel or air to the plurality of unit cells, where an insertion hole is defined in a second surface of the first end plate to be adjacent to the supply line, and the second surface of the first end plate is substantially perpendicular to the first surface of the first end plate.
    Type: Application
    Filed: April 29, 2014
    Publication date: April 2, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-won SONG, Jin-ho KIM, Jeong-sik KO, Ji-rae KIM
  • Publication number: 20150064595
    Abstract: A fluid tube includes: a first fluid tube; a second fluid tube connected to the first fluid tube; and a flow velocity equalizer in the second fluid tube, where the flow velocity equalizer increases a uniformity of fluid flow passed therethrough, the second fluid tube is wider than the first fluid tube, and the flow velocity equalizer includes a diverging tube and a converging tube. The fluid tube may further include a fluid divider between the flow velocity equalizer and the first fluid tube. The diverging tube of the flow velocity equalizer may have a width increasing in a fluid flow direction, and the converging tube of the flow velocity equalizer may include a plurality of converging tubes having widths decreasing in the fluid flow direction.
    Type: Application
    Filed: August 18, 2014
    Publication date: March 5, 2015
    Inventors: Jin-ho KIM, Tae-won SONG, Ji-rae KIM, Jeong-sik KO
  • Publication number: 20140162165
    Abstract: A fuel cell stack includes a first separating plate, a second separating plate corresponding to the first separating plate, a plurality of cells comprising a membrane electrode assembly disposed between the first separating plate and the second separating plate, and a cooling plate disposed between the plurality of cells, where a cooling channel is defined at opposing surfaces of the cooling plate.
    Type: Application
    Filed: August 8, 2013
    Publication date: June 12, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-won SONG, Jeong-sik KO, Ji-rae KIM, Jin-ho KIM
  • Publication number: 20140099563
    Abstract: A fuel cell stack includes a plurality of unit cells, a cooling plate and a block plate. Each unit cell includes a cathode electrode and an anode electrode respectively at opposing sides of an electrolyte membrane, and a separator facing each of the cathode electrode and the anode electrode. The cooling plate is between adjacent unit cells a cooling medium flows in the cooling plate. The block plate is between the cooling plate and an adjacent unit cell of the adjacent unit cells. The block plate blocks the cooling medium flowing in the cooling plate from contacting the adjacent unit cell of the adjacent unit cells.
    Type: Application
    Filed: March 12, 2013
    Publication date: April 10, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-won SONG, Kyoung-hwan CHOI, Jeong-sik KO, Ji-rae KIM, Jung-seok YI
  • Publication number: 20130236800
    Abstract: A method of activating a fuel cell includes: supplying a fuel to an anode of the fuel cell; supplying a gas mixture to a cathode of the fuel cell; applying a second load, which is equal to or less than a predetermined first load, to a stack of the fuel cell after supplying the gas mixture to the cathode; discontinuing the supply of the gas mixture; resupplying the gas mixture to the cathode when a voltage of the stack of the fuel cell is a predetermined voltage or less after discontinuing the supply of the gas mixture; and applying a third load, which is higher than the predetermined first load, to the stack of the fuel cell, where the supply of the fuel to the anode of the fuel cell is maintained.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-won SONG, Ji-rae KIM, Jung-seok YI, Jeong-sik KO