Patents by Inventor Jeon Woong Kang

Jeon Woong Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827280
    Abstract: An embodiment vehicle load distribution system includes a dash crossmember, a pair of front side members extending from the dash crossmember toward a front of a vehicle, and a pair of rear lower members extending from the dash crossmember toward a rear of the vehicle, wherein a front end of each rear lower member is aligned with a rear end of a corresponding front side member.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: November 28, 2023
    Assignees: Hyundai Motor Company, Kia Corporation
    Inventors: Jeon Woong Kang, Huen Sick Min
  • Publication number: 20230141662
    Abstract: An embodiment vehicle load distribution system includes a dash crossmember, a pair of front side members extending from the dash crossmember toward a front of a vehicle, and a pair of rear lower members extending from the dash crossmember toward a rear of the vehicle, wherein a front end of each rear lower member is aligned with a rear end of a corresponding front side member.
    Type: Application
    Filed: May 24, 2022
    Publication date: May 11, 2023
    Inventors: Jeon Woong Kang, Huen Sick Min
  • Publication number: 20230144195
    Abstract: A vehicle center frame module includes a pair of side sills, each side sill including a side sill inner having a closed cross section and a side sill outer having a closed cross section, wherein an inboard side surface of the side sill outer and an outboard side surface of the side sill inner are joined, and a plurality of crossmembers connecting the pair of side sills in a transverse direction of a vehicle, the crossmembers including a first crossmember and a second crossmember disposed behind the first crossmember in a longitudinal direction of the vehicle.
    Type: Application
    Filed: May 19, 2022
    Publication date: May 11, 2023
    Inventors: Jeon Woong Kang, Huen Sick Min
  • Publication number: 20230143298
    Abstract: An embodiment vehicle intermediate structure includes a first intermediate crossmember connecting a pair of side sills in a width direction of a vehicle, wherein each end face of the first intermediate crossmember is attached to an inboard side surface of the corresponding side sill, and wherein a cross section of the first intermediate crossmember is uniform in a longitudinal direction thereof.
    Type: Application
    Filed: June 23, 2022
    Publication date: May 11, 2023
    Inventors: Jeon Woong Kang, Huen Sick Min
  • Publication number: 20230065302
    Abstract: An embodiment vehicle front structure includes a pair of front side members, a pair of fender upper members located above the pair of front side members, respectively, a bumper back beam connecting front ends of the pair of front side members, and a front end module connected to the pair of front side members and the pair of fender upper members.
    Type: Application
    Filed: April 22, 2022
    Publication date: March 2, 2023
    Inventors: Jeon Woong Kang, Huen Sick Min
  • Patent number: 11466977
    Abstract: Since the fat content of pork is a deciding factor in grading the quality of meat, the use of a noninvasive subcutaneous probe for real-time, in situ monitoring of the fat components is of importance to vendors and other interested parties. Fortunately, in situ, in vivo monitoring of subcutaneous fat can be accomplished with spatially offset Raman spectroscopy (SORS) using a fiber-optic probe. The probe acquires Raman spectra as a function of spatial offset. These spectra are used to determine the relative composition of fat-to-skin. The Raman intensity ratio varies disproportionately depending on the fat content, with variations in slope that are correlated to the thickness of the fat layer. Ordinary least square (OLS) regression using two components indicates that depth-resolved SORS spectra reflect the relative thickness of the fat layer.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: October 11, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter T. C. So, Jeon Woong Kang, Hyung Min Kim
  • Publication number: 20210356251
    Abstract: Since the fat content of pork is a deciding factor in grading the quality of meat, the use of a noninvasive subcutaneous probe for real-time, in situ monitoring of the fat components is of importance to vendors and other interested parties. Fortunately, in situ, in vivo monitoring of subcutaneous fat can be accomplished with spatially offset Raman spectroscopy (SORS) using a fiber-optic probe. The probe acquires Raman spectra as a function of spatial offset. These spectra are used to determine the relative composition of fat-to-skin. The Raman intensity ratio varies disproportionately depending on the fat content, with variations in slope that are correlated to the thickness of the fat layer. Ordinary least square (OLS) regression using two components indicates that depth-resolved SORS spectra reflect the relative thickness of the fat layer.
    Type: Application
    Filed: March 18, 2021
    Publication date: November 18, 2021
    Inventors: Peter T. C. So, Jeon Woong Kang, Hyung Min Kim
  • Publication number: 20210059582
    Abstract: Noninvasive glucose monitoring has been a long-standing need in diabetes management. Among many approaches to meeting this need, Raman spectroscopy has attracted attention due to its molecular specificity. Previous Raman-based glucose sensing can predict blood glucose concentration based on a statistical correlation between the reference glucose concentration and unspecified spectral features. However, the lack of glucose Raman peaks and non-prospective prediction have led to questions about the effectiveness of in vivo Raman spectroscopy for transcutaneous glucose sensing. Here, we disclose technology for directly observing distinct glucose Raman spectra from skin. The Raman signal intensities were proportional to the reference glucose concentrations in three live swine glucose clamping experiments. Tracking the spectral intensity based on the linearity enables prospective prediction with high accuracy in within-subject and inter-subject models.
    Type: Application
    Filed: June 29, 2020
    Publication date: March 4, 2021
    Inventors: Jeon Woong Kang, Peter T. C. So
  • Patent number: 10006922
    Abstract: The present invention relates to the optical measurement of blood analytes, such as glycated hemoglobin (HbA1c) and serum albumin as a functional metric of mean blood glucose in the diagnosis of diabetic patients. Non-enhanced Raman spectroscopy is employed as the analytical method for quantitative detection of blood analytes. Using processing techniques, non-enzymatic glycosylation (glycation) of the analytes results in measurable and highly reproducible changes in the acquired spectral data, which enable the accurate measurements and classification of glycated and unglycated analytes.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 26, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Ramachandra Dasari, Ishan Barman, Narahara Chari Dingari, Jeon Woong Kang
  • Publication number: 20170173275
    Abstract: The present invention relates to devices, systems and methods for spectrally identifying tissues and guiding the introduction of a probe, needle, and medical instrument into a body structure. The probe can further be used for precise delivery of therapeutic agents to selected regions of the body.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 22, 2017
    Inventors: T. Anthony Anderson, Peter So, Jeon Woong Kang, Ramachandra Dasari
  • Patent number: 9662047
    Abstract: The present invention further relates to the selection of the specific filter combinations, which can provide sufficient information for multivariate calibration to extract accurate analyte concentrations in complex biological systems. The present invention also describes wavelength interval selection methods that give rise to the miniaturized designs. Finally, this invention presents a plurality of wavelength selection methods and miniaturized spectroscopic apparatus designs and the necessary tools to map from one domain (wavelength selection) to the other (design parameters). Such selection of informative spectral bands has a broad scope in miniaturizing any clinical diagnostic instruments which employ Raman spectroscopy in particular and other spectroscopic techniques in general.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: May 30, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Ishan Barman, Narahara Chari Dingari, Ramachandra Dasari, Michael Feld, Jonathan Feld, David Feld, Alison Hearn, Chae-Ryon Kong, Jeon Woong Kang
  • Publication number: 20140349337
    Abstract: The present invention relates to the optical measurement of blood analytes, such as glycated hemoglobin (HbA1c) and serum albumin as a functional metric of mean blood glucose in the diagnosis of diabetic patients. Non-enhanced Raman spectroscopy is employed as the analytical method for quantitative detection of blood analytes. Using processing techniques, non-enzymatic glycosylation (glycation) of the analytes results in measurable and highly reproducible changes in the acquired spectral data, which enable the accurate measurements and classification of glycated and unglycated analytes.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Ramachandra Dasari, Ishan Barman, Narahara Chari Dingari, Jeon Woong Kang