Patents by Inventor Jer-Shen Maa

Jer-Shen Maa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040135138
    Abstract: A dual gate strained-Si MOSFET with thin SiGe dislocation regions and a method for fabricating the same are provided. The method comprises: forming a first layer of relaxed SiGe overlying a substrate, having a thickness of less than 5000 Å; forming a second layer of relaxed SiGe overlying the substrate and adjacent to the first layer of SiGe, having a thickness of less than 5000 Å; forming a layer of strained-Si overlying the first and second SiGe layers; forming a shallow trench isolation region interposed between the first SiGe layer and the second SiGe layer; forming an n-well in the substrate and the overlying first layer of SiGe; forming a p-well in the substrate and the overlying second layer of SiGe; forming channel regions, in the strained-Si, and forming PMOS and NMOS transistor source and drain regions.
    Type: Application
    Filed: January 15, 2003
    Publication date: July 15, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee, Douglas J. Tweet, Jer-Shen Maa
  • Patent number: 6746902
    Abstract: A method of forming a SiGe layer having a relatively high Ge content includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the Ge content of the SiGe layer is equal to or greater than 22%, by molecular weight; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes; and depositing a layer of tensile-strained silicon on the relaxed SiGe layer to a thickness of between about 5 nm to 30 nm.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 8, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-Shen Maa, Douglas James Tweet, Sheng Teng Hsu
  • Publication number: 20040087119
    Abstract: A method of forming a SiGe layer having a relatively high Ge content includes preparing a silicon substrate; depositing a layer of strained SiGe to a thickness of between about 100 nm to 500 nm, wherein the Ge content of the SiGe layer is equal to or greater than 20%, by molecular weight; implanting H2+ ions into the SiGe layer; irradiating the substrate and SiGe layer, to relax the SiGe layer; and depositing a layer of tensile-strained silicon on the relaxed SiGe layer to a thickness of between about 5 nm to 30 nm.
    Type: Application
    Filed: July 22, 2003
    Publication date: May 6, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Jer-Shen Maa, Jong-Jan Lee, Douglas J. Tweet, Sheng Teng Hsu
  • Patent number: 6720258
    Abstract: An integrated circuit device, and a method of manufacturing the same, comprises an epitaxial nickel silicide on (100) Si, or a stable nickel silicide on amorphous Si, fabricated with a cobalt interlayer. In one embodiment the method comprises depositing a cobalt (Co) interface layer between the Ni and Si layers prior to the silicidation reaction. The cobalt interlayer regulates the flux of the Ni atoms through the cobalt/nickel/silicon alloy layer formed from the reaction of the cobalt interlayer with the nickel and the silicon so that the Ni atoms reach the Si interface at a similar rate, i.e., without any orientation preference, so as to form a uniform layer of nickel silicide. The nickel silicide may be annealed to form a uniform crystalline nickel disilicide. Accordingly, a single crystal nickel silicide on (100) Si or on amorphous Si is achieved wherein the nickel silicide has improved stability and may be utilized in ultra-shallow junction devices.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: April 13, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-shen Maa, Douglas J. Tweet, Yoshi Ono, Fengyan Zhang, Sheng Teng Hsu
  • Publication number: 20040048450
    Abstract: A method of fabricating a Si1−XGeX film on a silicon substrate includes preparing a silicon substrate; epitaxially depositing a Si1−XGeX layer on the silicon substrate forming a Si1−XGeX/Si interface there between; epitaxially growing a silicon cap on the Si1−XGeX layer; implanting hydrogen ions through the Si1−XGeX layer to a depth of between about 3 nm to 100 nm below the Si1−XGeX/Si interface; amorphizing the Si1−XGeX layer to form an amorphous, graded SiGe layer; and annealing the structure at a temperature of between about 650° C. to 1100° C. for between about ten seconds and sixty minutes to recrystallize the SiGe layer.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Douglas J. Tweet, Jer-Shen Maa, Jong-Jan Lee, Sheng Teng Hsu
  • Patent number: 6703293
    Abstract: A method of fabricating a Si1−XGeX film on a silicon substrate includes preparing a silicon substrate; epitaxially depositing a Si1−XGeX layer on the silicon substrate forming a Si1−XGeX/Si interface there between; amorphizing the Si1−XGeX layer at a temperature greater than Tc to form an amorphous, graded SiGe layer; and annealing the structure at a temperature of between about 650° C. to 1100° C. for between about ten seconds and sixty minutes to recrystallize the SiGe layer.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: March 9, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Douglas J. Tweet, Sheng Teng Hsu, Jer-shen Maa, Jong-Jan Lee
  • Patent number: 6699764
    Abstract: A method of fabricating a Si1−XGeX film on a silicon substrate includes preparing a silicon substrate; epitaxially depositing a Si1−XGeX layer on the silicon substrate forming a Si1−XGeX/Si interface there between; epitaxially growing a silicon cap on the Si1−XGeX layer; implanting hydrogen ions through the Si1−XGeX layer to a depth of between about 3 nm to 100 nm below the Si1−XGeX/Si interface; amorphizing the Si1−XGeX layer to form an amorphous, graded SiGe layer; and annealing the structure at a temperature of between about 650° C. to 1100° C. for between about ten seconds and sixty minutes to recrystallize the SiGe layer.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 2, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Douglas J. Tweet, Jer-shen Maa, Jong-Jan Lee, Sheng Teng Hsu
  • Patent number: 6682995
    Abstract: A conductive barrier, useful as a ferroelectric capacitor electrode, having high temperature stability has been provided. This conductive barrier permits the use of iridium (Ir) metal in IC processes involving annealing. Separating silicon substrate from Ir film with an intervening, adjacent, tantalum (Ta) film has been found to very effective in suppressing diffusion between layers. The Ir prevents the interdiffusion of oxygen into the silicon during annealing. A Ta or TaN layer prevents the diffusion of Ir into the silicon. This Ir/TaN structure protects the silicon interface so that adhesion, conductance, hillock, and peeling problems are minimized. The use of Ti overlying the Ir/TaN structure also helps prevent hillock formation during annealing. A method of forming a multilayer Ir conductive structure and Ir ferroelectric electrode are also provided.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: January 27, 2004
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Jer-shen Maa, Sheng Teng Hsu
  • Publication number: 20040009626
    Abstract: A method of fabricating a Si1-XGeX film on a silicon substrate includes preparing a silicon substrate; epitaxially depositing a Si1-XGeX layer on the silicon substrate forming a Si1-XGeX/Si interface there between; amorphizing the Si1-XGeX layer at a temperature greater than Tc to form an amorphous, graded SiGe layer; and annealing the structure at a temperature of between about 650° C. to 1100° C. for between about ten seconds and sixty minutes to recrystallize the SiGe layer.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Inventors: Douglas J. Tweet, Sheng Teng Hsu, Jer-shen Maa, Jong-Jan Lee
  • Patent number: 6627919
    Abstract: A thermally stable nickel germanosilicide on SiGe integrated circuit device, and a method of making the same, is disclosed. During fabrication of the device iridium or cobalt is added at the Ni/SiGe interface to decrease the sheet resistance of the device. The device comprising nickel silicide with iridium on SiGe shows thermal stability at temperatures up to 800° C. The device comprising nickel silicide with cobalt on SiGe shows a decrease in the sheet resistance with temperature, i.e., the resistance remains low when annealing temperatures extend up to and beyond 800° C.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 30, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-shen Maa, Douglas James Tweet, Sheng Teng Hsu
  • Publication number: 20030176012
    Abstract: A method of forming an electrode and a ferroelectric thin film thereon, includes preparing a substrate; depositing an electrode on the substrate, wherein the electrode is formed of a material taken from the group of materials consisting of iridium and iridium composites; and forming a single-phase, c-axis PGO ferroelectric thin film thereon, wherein the ferroelectric thin film exhibits surface smoothness and uniform thickness.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 18, 2003
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Jer-Shen Maa, Wei-Wei Zhuang, Sheng Teng Hsu
  • Publication number: 20030172866
    Abstract: A method is provided for forming a relaxed single-crystal silicon germanium film on a silicon substrate. Also provided is a film structure with a relaxed layer of graded silicon germanium on a silicon substrate. The method comprises: providing a silicon (Si) substrate with a top surface; growing a graded layer of strained single-crystal Si1-xGex having a bottom surface overlying the Si substrate top surface and a top surface, where x increases with the Si1-xGex layer thickness in the range between 0.03 and 0.
    Type: Application
    Filed: March 13, 2002
    Publication date: September 18, 2003
    Inventors: Sheng Teng Hsu, Jong-Jan Lee, Jer-shen Maa, Douglas J. Tweet
  • Publication number: 20030143783
    Abstract: A method of forming a SiGe layer having a relatively high Ge content includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the Ge content of the SiGe layer is equal to or greater than 22%, by molecular weight; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes; and depositing a layer of tensile-strained silicon on the relaxed SiGe layer to a thickness of between about 5 mn to 30 nm.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Jer-Shen Maa, Douglas James Tweet, Sheng Teng Hsu
  • Publication number: 20030140844
    Abstract: A method of forming a SiGe layer having a relatively high germanium content and a relatively low threading dislocation density includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the germanium content of the SiGe layer is greater than 20%, by atomic ratio; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; patterning the SiGe layer with photoresist; plasma etching the structure to form trenches about regions; removing the photoresist; and thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Jer-Shen Maa, Douglas James Tweet, Tingkai Li, Jong-Jan Lee, Sheng Teng Hsu
  • Publication number: 20030124780
    Abstract: A thermally stable nickel germanosilicide on SiGe integrated circuit device, and a method of making the same, is disclosed. During fabrication of the device iridium or cobalt is added at the Ni/SiGe interface to decrease the sheet resistance of the device. The device comprising nickel silicide with iridium on SiGe shows thermal stability at temperatures up to 800° C. The device comprising nickel silicide with cobalt on SiGe shows a decrease in the sheet resistance with temperature, i.e., the resistance remains low when annealing temperatures extend up to and beyond 800° C.
    Type: Application
    Filed: December 12, 2002
    Publication date: July 3, 2003
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Jer-shen Maa, Douglas James Tweet, Sheng Teng Hsu
  • Patent number: 6586260
    Abstract: A method of forming an electrode and a ferroelectric thin film thereon, includes preparing a substrate; depositing an electrode on the substrate, wherein the electrode is formed of a material taken from the group of materials consisting of iridium and iridium composites; and forming a single-phase, c-axis PGO ferroelectric thin film thereon, wherein the ferroelectric thin film exhibits surface smoothness and uniform thickness.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: July 1, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Jer-Shen Maa, Wei-Wei Zhuang, Sheng Teng Hsu
  • Patent number: 6585821
    Abstract: A method of monitoring the synthesis of a PGO spin-coating precursor solution includes monitoring heating of the solution with a UV spectrometer and terminating the heating step when a solution property reaches a predetermined value. The method utilizes the starting materials of lead acetate trihydrate (Pb(OAc)2.3H2O) and germanium alkoxide (Ge(OR)4 (R=C2H5 and CH(CH3)2)). The organic solvent is di(ethylene glycol)ethyl ether. The mixed solution of lead and di(ethylene glycol)ethyl ether is heated in an atmosphere of air at a temperature no greater than 190° C., and preferably no greater than 185° C. for a time period in a range of approximately eighty-five minutes. During the heating step the solution properties are monitored to determine when the reaction is complete and when decomposition of the desired product begins to take place. The solution is then added to germanium di(ethylene glycol)ethyl ether to make the PGO spin-coating solution.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: July 1, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Fengyan Zhang, Jer-shen Maa, Sheng Teng Hsu
  • Patent number: 6583000
    Abstract: A method of forming a CMOS device includes preparing a silicon substrate, including forming plural device regions on the substrate; epitaxially forming a strained SiGe layer on the substrate, wherein the SiGe layer has a germanium content of between about 20% and 40%; forming a silicon cap layer epitaxially on the SiGe layer; depositing a gate oxide layer; depositing a first polysilicon layer; implanting H+ ions to a depth below the SiGe layer; forming a trench by shallow trench isolation which extends into the substrate; annealing the structure at a temperature of between about 700° C. to 900° C. for between about five minutes to sixty minutes; depositing an oxide layer and a second polysilicon layer, thereby filling the trench; planarizing the structure to the top of the level of the portion of the second polysilicon layer which is located in the trench; and completing the CMOS device.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: June 24, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee, Jer-shen Maa, Douglas James Tweet
  • Publication number: 20030108670
    Abstract: A method of monitoring the synthesis of a PGO spin-coating precursor solution includes monitoring heating of the solution with a UV spectrometer and terminating the heating step when a solution property reaches a predetermined value. The method utilizes the starting materials of lead acetate trihydrate (Pb(OAc)2.3H2O) and germanium alkoxide (Ge(OR)4(R=C2H5 and CH(CH3)2)). The organic solvent is di(ethylene glycol) ethyl ether. The mixed solution of lead and di(ethylene glycol) ethyl ether is heated in an atmosphere of air at a temperature no greater than 190° C., and preferably no greater than 185° C. for a time period in a range of approximately eighty-five minutes. During the heating step the solution properties are monitored to determine when the reaction is complete and when decomposition of the desired product begins to take place. The solution is then added to germanium di(ethylene glycol) ethyl ether to make the PGO spin-coating solution.
    Type: Application
    Filed: January 15, 2003
    Publication date: June 12, 2003
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Fengyan Zhang, Jer-shen Maa, Sheng Teng Hsu
  • Publication number: 20030104684
    Abstract: A conductive barrier, useful as a ferroelectric capacitor electrode, having high temperature stability has been provided. This conductive barrier permits the use of iridium (Ir) metal in IC processes involving annealing. Separating silicon substrate from Ir film with an intervening, adjacent, tantalum (Ta) film has been found to very effective in suppressing diffusion between layers. The Ir prevents the interdiffusion of oxygen into the silicon during annealing. A Ta or TaN layer prevents the diffusion of Ir into the silicon. This Ir/TaN structure protects the silicon interface so that adhesion, conductance, hillock, and peeling problems are minimized. The use of Ti overlying the Ir/TaN structure also helps prevent hillock formation during annealing. A method of forming a multilayer Ir conductive structure and Ir ferroelectric electrode are also provided.
    Type: Application
    Filed: December 11, 2002
    Publication date: June 5, 2003
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Jer-shen Maa, Sheng Teng Hsu