Patents by Inventor Jeramy D. Zimmerman

Jeramy D. Zimmerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11329241
    Abstract: Disclosed herein are exciton-blocking treatments for buffer layers used in organic photosensitive optoelectronic devices. More specifically, the organic photosensitive optoelectronic devices described herein include at least one self-assembled monolayer disposed on the surface of an anode buffer layer. Methods of preparing these devices are also disclosed. The present disclosure further relates to methods of forming at least one self-assembled monolayer on a substrate.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: May 10, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Byeongseop Song, Jeramy D. Zimmerman
  • Patent number: 11121336
    Abstract: Disclosed herein are organic photosensitive optoelectronic devices comprising two electrodes in superposed relation; a mixed photoactive layer located between the two electrodes, wherein the mixed photoactive layer comprises at least one donor material having a HOMO energy and at least one acceptor material having a LUMO energy, wherein the at least one donor material and the at least one acceptor material form a mixed donor-acceptor heterojunction; a photoactive layer adjacent to and interfacing with the mixed photoactive layer, wherein the photoactive layer comprises a material having a LUMO energy within 0.3 eV of the LUMO energy of the at least one acceptor material or a HOMO energy within 0.3 eV of the HOMO energy of the at least one donor material; and a buffer layer adjacent to and interfacing with the mixed photoactive layer.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: September 14, 2021
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy D. Zimmerman, Xin Xiao
  • Publication number: 20210005815
    Abstract: Disclosed herein are organic photosensitive optoelectronic device comprising a first layer comprising one or more of a first layer material, a second layer comprising one or more of a second layer material, and a third layer comprising one or more of a third layer material. The second layer may be dissolved in a semi-orthogonal solvent. The first layer and the third layer may be very slightly soluble or practically insoluble in the semi-orthogonal solvent.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. FORREST, Brian E. LASSITER, Jeramy D. ZIMMERMAN
  • Publication number: 20190259971
    Abstract: Disclosed herein are organic photosensitive devices including at least one exciton-blocking charge carrier filter. The filters comprise a mixture of at least one wide energy gap material and at least one electron or hole conducting material. As described herein, the novel filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
    Type: Application
    Filed: August 31, 2018
    Publication date: August 22, 2019
    Inventors: Stephen R. Forrest, Xin Xiao, Jeramy D. Zimmerman, Kevin Bergemann, Anurag Panda, Brian E. Lassiter, Mark E. Thompson, Andrew N. Bartynski, Cong Trinh
  • Patent number: 10297775
    Abstract: There is disclosed an organic optoelectronic device comprising two electrodes in superposed relation comprising an anode and a cathode, at least one donor material and at least one acceptor material located between the two electrodes forming a donor-acceptor heterojunction, an anode buffer layer adjacent to the anode and a cathode buffer layer adjacent to the cathode, and an intermediate layer adjacent to at least one of the anode and cathode buffer layers, wherein when the intermediate layer is adjacent to the anode buffer layer, the intermediate layer is chosen to facilitate the transport of holes to the anode buffer layer, and when the intermediate layer is adjacent to the cathode buffer layer, the intermediate layer is chosen to facilitate the transport of electrons to the cathode buffer layer. Also disclosed are methods of making the same.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 21, 2019
    Assignee: The Regents of the University of Michigan
    Inventors: Brian Lassiter, Jeramy D. Zimmerman, Stephen R. Forrest
  • Patent number: 10276817
    Abstract: Disclosed herein are stable organic photosensitive devices including at least one exciton-blocking charge carrier filter. The filters comprise a mixture of at least one wide energy gap material having a sufficiently high glass transition temperature, e.g., higher than the temperature or temperature range at which the device typically operates, higher than a highest operating temperature of the device, higher than a threshold temperature value, etc. and at least one electron or hole conducting material. As described herein, the novel filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: April 30, 2019
    Assignees: University of Southern California, The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Quinn Burlingame, Xin Xiao, Kevin Bergemann, Anurag Panda, Jeramy D. Zimmerman, Brian E. Lassiter, Mark E. Thompson, Andrew N. Bartynski, Cong Trinh
  • Patent number: 10243018
    Abstract: A device includes a three-dimensionally curved substrate, a patterned metal layer disposed on the curved substrate, and an array of optoelectronic devices, each optoelectronic device including an optoelectronic structure supported by the curved substrate. Each optoelectronic structure includes an inorganic semiconductor stack. The device further includes a set of contact stripes extending across the curved substrate, each optoelectronic structure being coupled to a respective contact stripe of the set of contact stripes. The array of optoelectronic devices is secured to the curved substrate via a bond between the patterned metal layer and the set of contact stripes.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: March 26, 2019
    Assignees: The Regents of the University of Michigan, Universal Display Corporation
    Inventors: Stephen Forrest, Jeramy D. Zimmerman, Xin Xu, Christopher Kyle Renshaw
  • Patent number: 10186629
    Abstract: The present disclosure generally relates to thin film liftoff processes for use in making devices such as electronic and optoelectronic devices, e.g., photovoltaic devices. The methods described herein use a combination of epitaxial liftoff and spalling techniques to quickly and precisely control the separation of an epilayer from a growth substrate. Provided herein are growth structures having a sacrificial layer positioned between a growth substrate and a sacrificial layer. Exemplary methods of the present disclosure include forming at least one notch in the sacrificial layer and spalling the growth structure by crack propagation at the at least one notch to separate the epilayer from the growth substrate.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: January 22, 2019
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Kyusang Lee, Jeramy D. Zimmerman
  • Patent number: 10141531
    Abstract: Disclosed herein are organic photosensitive optoelectronic devices comprising at least one hybrid planar-graded heterojunction. In particular, organic photosensitive optoelectronic devices are disclosed having two electrodes (110), (150) in superposed relation, a graded heterojunction layer (130) located between the two electrodes, and at least one photoactive layer (120), (140) adjacent to and interfacing with the graded heterojunction layer.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 27, 2018
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy D. Zimmerman, Brian E. Lassiter, Xin Xiao
  • Patent number: 10069095
    Abstract: Disclosed herein are organic photosensitive devices including at least one exciton-blocking charge carrier filter. The filters comprise a mixture of at least one wide energy gap material and at least one electron or hole conducting material. As described herein, the novel filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: September 4, 2018
    Assignees: University of Southern California, The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Xin Xiao, Jeramy D. Zimmerman, Kevin Bergemann, Anurag Panda, Brian E. Lassiter, Mark E. Thompson, Andrew N. Bartynski, Cong Trinh
  • Patent number: 9847487
    Abstract: Disclosed herein are methods for fabricating an organic photovoltaic device comprising depositing an amorphous organic layer and a crystalline organic layer over a first electrode, wherein the amorphous organic layer and the crystalline organic layer contact one another at an interface; annealing the amorphous organic layer and the crystalline organic layer for a time sufficient to induce at least partial crystallinity in the amorphous organic layer; and depositing a second electrode over the amorphous organic layer and the crystalline organic layer. In the methods and devices herein, the amorphous organic layer may comprise at least one material that undergoes inverse-quasi epitaxial (IQE) alignment to a material of the crystalline organic layer as a result of the annealing.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: December 19, 2017
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy D. Zimmerman, Brian E Lassiter, Xin Xiao
  • Publication number: 20160254101
    Abstract: Disclosed herein are organic photosensitive devices including a first subcell and a second subcell and having at least one exciton-blocking charge carrier filter disposed between the subcells. The filters comprise a mixture of at least one wide energy gap material and at least one electron or hole conducting material. As described herein, the filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
    Type: Application
    Filed: October 27, 2014
    Publication date: September 1, 2016
    Inventors: Stephen R. FORREST, Xin XIAO, Kevin BERGEMANN, Anurag PANDA, Jeramy D. ZIMMERMAN, Brian E. LASSITER, Mark E. THOMPSON, Andrew N. BARTYNSKI, Cong THINH, Xiaozhou CHE
  • Publication number: 20160204367
    Abstract: Disclosed herein are exciton-blocking treatments for buffer layers used in organic photosensitive optoelectronic devices. More specifically, the organic photosensitive optoelectronic devices described herein include at least one self-assembled monolayer disposed on the surface of an anode buffer layer. Methods of preparing these devices are also disclosed. The present disclosure further relates to methods of forming at least one self-assembled monolayer on a substrate.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 14, 2016
    Inventors: Stephen R. FORREST, Byeongseop SONG, Jeramy D. ZIMMERMAN
  • Publication number: 20160197227
    Abstract: The present disclosure generally relates to thin film liftoff processes for use in making devices such as electronic and optoelectronic devices, e.g., photovoltaic devices. The methods described herein use a combination of epitaxial liftoff and spalling techniques to quickly and precisely control the separation of an epilayer from a growth substrate. Provided herein are growth structures having a sacrificial layer positioned between a growth substrate and a sacrificial layer. Exemplary methods of the present disclosure include forming at least one notch in the sacrificial layer and spalling the growth structure by crack propagation at the at least one notch to separate the epilayer from the growth substrate.
    Type: Application
    Filed: August 26, 2014
    Publication date: July 7, 2016
    Inventors: Stephen R. Forrest, Kyusang Lee, Jeramy D. Zimmerman
  • Patent number: 9385348
    Abstract: A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is a second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: July 5, 2016
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Brian E. Lassiter, Jeramy D. Zimmerman
  • Publication number: 20160056398
    Abstract: Disclosed herein are organic photosensitive devices including at least one exciton-blocking charge carrier filter. The filters comprise a mixture of at least one wide energy gap material and at least one electron or hole conducting material. As described herein, the novel filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
    Type: Application
    Filed: April 14, 2014
    Publication date: February 25, 2016
    Inventors: Stephen R. Forrest, Xin Xiao, Jeramy D. Zimmerman, Kevin Bergemann, Anurag Panda, Brian E. Lassiter, Mark E. Thompson, Andrew N. Bartynski, Cong Trinh
  • Publication number: 20160020418
    Abstract: Disclosed herein are stable organic photosensitive devices including at least one exciton-blocking charge carrier filter. The filters comprise a mixture of at least one wide energy gap material having a sufficiently high glass transition temperature, e.g., higher than the temperature or temperature range at which the device typically operates, higher than a highest operating temperature of the device, higher than a threshold temperature value, etc. and at least one electron or hole conducting material. As described herein, the novel filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
    Type: Application
    Filed: July 20, 2015
    Publication date: January 21, 2016
    Inventors: Stephen R. Forrest, Quinn Burlingame, Xin Xiao, Kevie Bergemann, Anurag Panda, Jeramy D. Zimmerman, Brian E. Lassiter, Mark E. Thompson, Andrew N. Bartynski, Cong Trinh
  • Publication number: 20160006002
    Abstract: A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is a second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.
    Type: Application
    Filed: August 4, 2015
    Publication date: January 7, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. FORREST, Brian E. LASSITER, Jeramy D. ZIMMERMAN
  • Publication number: 20150357366
    Abstract: A device includes a three-dimensionally curved substrate, a patterned metal layer disposed on the curved substrate, and an array of optoelectronic devices, each optoelectronic device including an optoelectronic structure supported by the curved substrate. Each optoelectronic structure includes an inorganic semiconductor stack. The device further includes a set of contact stripes extending across the curved substrate, each optoelectronic structure being coupled to a respective contact stripe of the set of contact stripes. The array of optoelectronic devices is secured to the curved substrate via a bond between the patterned metal layer and the set of contact stripes.
    Type: Application
    Filed: May 22, 2015
    Publication date: December 10, 2015
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen Forrest, Jeramy D. Zimmerman, Xin Xu, Christopher Kyle Renshaw
  • Publication number: 20150349283
    Abstract: Disclosed herein are organic photosensitive optoelectronic devices comprising two electrodes in superposed relation; a mixed photoactive layer located between the two electrodes, wherein the mixed photoactive layer comprises at least one donor material having a HOMO energy and at least one acceptor material having a LUMO energy, wherein the at least one donor material and the at least one acceptor material form a mixed donor-acceptor heterojunction; a photoactive layer adjacent to and interfacing with the mixed photoactive layer, wherein the photoactive layer comprises a material having a LUMO energy within 0.3 eV of the LUMO energy of the at least one acceptor material or a HOMO energy within 0.3 eV of the HOMO energy of the at least one donor material; and a buffer layer adjacent to and interfacing with the mixed photoactive layer.
    Type: Application
    Filed: November 22, 2013
    Publication date: December 3, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. FORREST, Jeramy, D. ZIMMERMAN,, Xin XIAO