Patents by Inventor Jeremiah HEBDING

Jeremiah HEBDING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220242725
    Abstract: Embodiments of the present disclosure provide methods of forming solid state dual pore sensors which may be used for biopolymer sequencing and dual pore sensors formed therefrom. In one embodiment, a method of forming a dual pore sensor includes providing a pattern in a surface of a substrate. Generally, the pattern features two fluid reservoirs separated by a divider wall. The method further includes depositing a layer of sacrificial material into the two fluid reservoirs, depositing a membrane layer, patterning two nanopores through the membrane layer, removing the sacrificial material from the two fluid reservoirs, and patterning one or more fluid ports and a common chamber.
    Type: Application
    Filed: April 15, 2020
    Publication date: August 4, 2022
    Inventors: Joseph R. JOHNSON, Roger QUON, Archana KUMAR, Ryan Scott SMITH, Jeremiah HEBDING, Raghav SREENIVASAN
  • Publication number: 20220236250
    Abstract: Embodiments of the present disclosure provide methods of forming solid state dual pore sensors which may be used for biopolymer sequencing and dual pore sensors formed therefrom. In one embodiment, a dual pore sensor features a substrate having a patterned surface comprising two recessed regions spaced apart by a divider wall and a membrane layer disposed on the patterned surface. The membrane layer, the divider wall, and one or more surfaces of each of the two recessed regions collectively define a first fluid reservoir and a second fluid reservoir. A first nanopore is disposed through a portion of the membrane layer disposed over the first fluid reservoir and a second nanopore is disposed through a portion of the membrane layer disposed over the second fluid reservoir. Herein, opposing surfaces of the divider wall are sloped to each form an angle of less than 90° with a respective reservoir facing surface of the membrane layer.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 28, 2022
    Inventors: Joseph R. JOHNSON, Roger QUON, Archana KUMAR, Ryan Scott SMITH, Jeremiah HEBDING, Raghav SREENIVASAN
  • Patent number: 10976491
    Abstract: In one embodiment an optoelectronic system can include a photonics interposer having a substrate and a functional interposer structure formed on the substrate, a plurality of through vias carrying electrical signals extending through the substrate and the functional interposer structure, and a plurality of wires carrying signals to different areas of the functional interposer structure. The system can further include one or more photonics device integrally formed in the functional interposer structure, and one or more prefabricated component attached to the functional interposer structure.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 13, 2021
    Assignees: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, ANALOG PHOTONICS, LLC, ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Douglas Coolbaugh, Michael Watts, Michal Lipson, Keren Bergman, Thomas Koch, Jeremiah Hebding, Daniel Pascual, Douglas La Tulipe
  • Publication number: 20180143374
    Abstract: In one embodiment an optoelectronic system can include a photonics interposer having a substrate and a functional interposer structure formed on the substrate, a plurality of through vias carrying electrical signals extending through the substrate and the functional interposer structure, and a plurality of wires carrying signals to different areas of the functional interposer structure. The system can further include one or more photonics device integrally formed in the functional interposer structure, and one or more prefabricated component attached to the functional interposer structure.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 24, 2018
    Inventors: Douglas COOLBAUGH, Michael WATTS, Michal LIPSON, Keren BERGMAN, Thomas KOCH, Jeremiah HEBDING, Daniel PASCUAL, Douglas LA TULIPE
  • Patent number: 8969200
    Abstract: An apparatus and method are provided for integrating TSVs into devices prior to device contacts processing. The apparatus includes a semiconducting layer; one or more CMOS devices mounted on a top surface of the semiconducting layer; one or more TSVs integrated into the semiconducting layer of the device wafer; at least one metal layer applied over the TSVs; and one or more bond pads mounted onto a top layer of the at least one metal layer, wherein the at least one metal layer is arranged to enable placement of the one or more bond pads at a specified location for bonding to a second device wafer. The method includes obtaining a wafer of semiconducting material, performing front end of line processing on the wafer; providing one or more TSVs in the wafer; performing middle of line processing on the wafer; and performing back end of line processing on the wafer.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 3, 2015
    Assignee: The Research Foundation of State University of New York
    Inventors: Jeremiah Hebding, Megha Rao, Colin McDonough, Matthew Smalley, Douglas Duane Coolbaugh, Joseph Piccirillo, Jr., Stephen G. Bennett, Michael Liehr, Daniel Pascual
  • Patent number: 8697542
    Abstract: A method is provided for bonding a die to a base technology wafer and includes: providing a device wafer having a front, back, at least one side, and at least one TSV, wherein the back contains a substrate material; providing a carrier wafer having a front, back, and at least one side; bonding the wafers using an adhesive; removing the substrate material and wet etching, from the device wafer's back side, to expose at least one metallization scheme feature; processing the device wafer's back side to create at least one backside redistribution layer; removing the device wafer from the carrier wafer; dicing the device wafer into individual die; providing a base technology wafer; coating the front of the base technology wafer with a sacrificial adhesive; placing the front of the individual die onto the front of the base technology wafer; and bonding the individual die to the base technology wafer.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 15, 2014
    Assignee: The Research Foundation of State University of New York
    Inventors: Daniel Pascual, Jeremiah Hebding, Megha Rao, Colin McDonough, Douglas Duane Coolbaugh, Joseph Piccirillo, Jr., Michael Liehr
  • Publication number: 20130270711
    Abstract: An apparatus and method are provided for integrating TSVs into devices prior to device contacts processing. The apparatus includes a semiconducting layer; one or more CMOS devices mounted on a top surface of the semiconducting layer; one or more TSVs integrated into the semiconducting layer of the device wafer; at least one metal layer applied over the TSVs; and one or more bond pads mounted onto a top layer of the at least one metal layer, wherein the at least one metal layer is arranged to enable placement of the one or more bond pads at a specified location for bonding to a second device wafer. The method includes obtaining a wafer of semiconducting material, performing front end of line processing on the wafer; providing one or more TSVs in the wafer; performing middle of line processing on the wafer; and performing back end of line processing on the wafer.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: The Research Foundation Of State University Of New York
    Inventors: Jeremiah HEBDING, Megha RAO, Colin McDONOUGH, Matthew SMALLEY, Douglas Duane COOLBAUGH, Joseph PICCIRILLO, JR., Stephen G. BENNETT, Michael LIEHR, Daniel PASCUAL
  • Publication number: 20130273691
    Abstract: A method is provided for bonding a die to a base technology wafer and includes: providing a device wafer having a front, back, at least one side, and at least one TSV, wherein the back contains a substrate material; providing a carrier wafer having a front, back, and at least one side; bonding the wafers using an adhesive; removing the substrate material and wet etching, from the device wafer's back side, to expose at least one metallization scheme feature; processing the device wafer's back side to create at least one backside redistribution layer; removing the device wafer from the carrier wafer; dicing the device wafer into individual die; providing a base technology wafer; coating the front of the base technology wafer with a sacrificial adhesive; placing the front of the individual die onto the front of the base technology wafer; and bonding the individual die to the base technology wafer.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: Daniel PASCUAL, Jeremiah HEBDING, Megha RAO, Colin McDONOUGH, Douglas Duane COOLBAUGH, Joseph PICCIRILLO, JR., Michael LIEHR