Patents by Inventor Jeremiah P. Turpin

Jeremiah P. Turpin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967776
    Abstract: An antenna system that includes a plurality of lens sets. Each lens set includes a lens and at least one feed element. At least one feed element is aligned with the lens and configured to direct a signal through the lens at a desired direction.
    Type: Grant
    Filed: October 27, 2023
    Date of Patent: April 23, 2024
    Assignee: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Daniel F. DiFonzo, John Finney
  • Patent number: 11967775
    Abstract: An antenna system that includes a plurality of lens sets. Each lens set includes a lens and at least one feed element. At least one feed element is aligned with the lens and configured to direct a signal through the lens at a desired direction.
    Type: Grant
    Filed: October 27, 2023
    Date of Patent: April 23, 2024
    Assignee: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Daniel F. DiFonzo, John Finney
  • Publication number: 20240128655
    Abstract: A microwave prism is used to repoint an operational Direct-to-Home (DTH) or Very Small Aperture Terminal (VSAT) reflector antenna as part of a ground terminal to receive (or transmit) signals from a different satellite or orbital position without physically moving the reflector or the feed horn antenna. The microwave prism operates by shifting the radiated fields from the horn antenna generally perpendicular to the focal axis of the parabolic reflector in order to cause the main beam of the reflector to scan in response. For an existing reflector antenna receiving signals from an incumbent satellite, a prism has been designed to be snapped into place over the feed horn and shift the fields laterally by a calibrated distance. The structure of the prism is designed to be positioned and oriented correctly without the use of skilled labor.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 18, 2024
    Applicant: All.Space Networks Limited
    Inventors: Jeremiah P. Turpin, John Finney
  • Publication number: 20240088554
    Abstract: A circuit has at least one amplifier and a signal routing device such as one or more switches, and an array of antenna elements from which some subset must be enabled and processed at a time. The antenna elements can be grouped in accordance with an organization scheme (e.g., rows, columns) to enable more flexibility in selecting and routing the signals. The system is used to create one or more beams, which can be pointed (steered) to a wide range of directions by means of selecting one or more feed antennas in a switched-feed antenna without including full receive and transmit circuitry (DSP, frequency conversion) for each feed in the array. In this case, minimizing the number of DSP chains is desirable to reduce the cost, power, and complexity of the antenna. The resulting beam(s) can be combined and manipulated to support multiple users, track several targets, increase operational range, increase radar resolution, or data-rate in communications.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: All.Space Networks Limited
    Inventors: Sebastian Diebold, Vikas Sharma, Brian Murphy Billman, Jeremiah P. Turpin
  • Publication number: 20240079776
    Abstract: An antenna system that includes a plurality of lens sets. Each lens set includes a lens and at least one feed element. At least one feed element is aligned with the lens and configured to direct a signal through the lens at a desired direction.
    Type: Application
    Filed: October 30, 2023
    Publication date: March 7, 2024
    Applicant: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Daniel F. DiFonzo, John Finney
  • Publication number: 20240063541
    Abstract: An antenna system that includes a plurality of lens sets. Each lens set includes a lens and at least one feed element. At least one feed element is aligned with the lens and configured to direct a signal through the lens at a desired direction.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 22, 2024
    Applicant: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Daniel F. DiFonzo, John Finney
  • Publication number: 20240055761
    Abstract: An antenna system that includes a plurality of lens sets. Each lens set includes a lens and at least one feed element. At least one feed element is aligned with the lens and configured to direct a signal through the lens at a desired direction.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 15, 2024
    Applicant: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Daniel F. DiFonzo, John Finney
  • Patent number: 11894610
    Abstract: A system designs a thin and relatively flat microwave focusing lens that can produce multiple simultaneous beams, using readily-available isotropic dielectric materials, and having a gradient-index (GRIN) profile. The design optimizes the lens to achieve beam scanning and/or multiple beams over a wide field of regard (FOR) with broad bandwidth and a very short focal length compared with conventional lenses. The lens can be used individually or as an element in a more complex antenna having multiple lenses in various orientations that are independently switched, selected and/or excited simultaneously as elements in a phased array. The antenna terminal incorporates such lens into an array of lenses along with one or more feeds to produce single or multiple beams covering a broad field of regard for such applications as satellite communications on-the-move, cellular, broadband point-point or point-multipoint and other terrestrial or satellite communications systems.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 6, 2024
    Assignee: All.Space Networks Limited
    Inventors: Jeremiah P. Turpin, Clinton P. Scarborough, Daniel F. DiFonzo, John Finney
  • Patent number: 11888228
    Abstract: A microwave prism is used to repoint an operational Direct-to-Home (DTH) or Very Small Aperture Terminal (VSAT) reflector antenna as part of a ground terminal to receive (or transmit) signals from a different satellite or orbital position without physically moving the reflector or the feed horn antenna. The microwave prism operates by shifting the radiated fields from the horn antenna generally perpendicular to the focal axis of the parabolic reflector in order to cause the main beam of the reflector to scan in response. For an existing reflector antenna receiving signals from an incumbent satellite, a prism has been designed to be snapped into place over the feed horn and shift the fields laterally by a calibrated distance. The structure of the prism is designed to be positioned and oriented correctly without the use of skilled labor.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: January 30, 2024
    Assignee: All.Space Networks Limited
    Inventors: Jeremiah P. Turpin, John Finney
  • Patent number: 11870154
    Abstract: A circuit has at least one amplifier and a signal routing device such as one or more switches, and an array of antenna elements from which some subset must be enabled and processed at a time. The antenna elements can be grouped in accordance with an organization scheme (e.g., rows, columns) to enable more flexibility in selecting and routing the signals. The system is used to create one or more beams, which can be pointed (steered) to a wide range of directions by means of selecting one or more feed antennas in a switched-feed antenna without including full receive and transmit circuitry (DSP, frequency conversion) for each feed in the array. In this case, minimizing the number of DSP chains is desirable to reduce the cost, power, and complexity of the antenna. The resulting beam(s) can be combined and manipulated to support multiple users, track several targets, increase operational range, increase radar resolution, or data-rate in communications.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: January 9, 2024
    Assignee: All.Space Networks Limited
    Inventors: Sebastian Diebold, Vikas Sharma, Brian Murphy Billman, Jeremiah P. Turpin
  • Publication number: 20230327754
    Abstract: A method of operating a satellite communications terminal.
    Type: Application
    Filed: April 7, 2023
    Publication date: October 12, 2023
    Applicant: All.Space Networks Limited
    Inventors: Brian Murphy Billman, Jeremiah P. Turpin, John Finney
  • Publication number: 20230291469
    Abstract: A method of operating a satellite communications network, the method comprising: receiving from a satellite terminal a message; and storing the message contents in a satellite network database, the message indicating one or both of: (i) a list of communication satellites which are blocked to a satellite antenna or a portion of the field of view of the satellite antenna which is blocked, at a particular geographic location of the satellite antenna; and (ii) a list of communication satellites that are visible to the satellite antenna or a visible portion of the field of view of the satellite antenna, at a particular geographic location of the satellite antenna. A method of operating a satellite terminal having a satellite antenna.
    Type: Application
    Filed: March 11, 2023
    Publication date: September 14, 2023
    Applicant: All.Space Networks Limited
    Inventors: Brian Murphy Billman, Jeremiah P. Turpin, John Finney
  • Publication number: 20230275346
    Abstract: A hybrid mechanical-lens array antenna is described that can be configured with different orientations and arrangements of the plurality of lenses within the array to control and enhance the performance at different regions of scan. This can include the addition of a secondary array (a skirt) at a large tilt angle, tilting the primary array, tilting the individual lenses within the primary array, or any combination. These design choices, when holding the number of lens modules (and, therefore, cost and power consumption) constant, have the effect of changing the system height, reducing the boresight gain and increasing the gain at scan, with each option showing different trades of height and scan and boresight performance.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Applicant: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Brian M. Billman, John Finney
  • Patent number: 11735816
    Abstract: A hybrid mechanical-lens array antenna is described that can be configured with different orientations and arrangements of the plurality of lenses within the array to control and enhance the performance at different regions of scan. This can include the addition of a secondary array (a skirt) at a large tilt angle, tilting the primary array, tilting the individual lenses within the primary array, or any combination. These design choices, when holding the number of lens modules (and, therefore, cost and power consumption) constant, have the effect of changing the system height, reducing the boresight gain and increasing the gain at scan, with each option showing different trades of height and scan and boresight performance.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 22, 2023
    Assignee: All.Space Networks Limited
    Inventors: Clinton P. Scarborough, Jeremiah P. Turpin, Brian M. Billman, John Finney
  • Publication number: 20230258820
    Abstract: A ground antenna determines the current time and its own position from received signals that were transmitted by artificial earth satellites for communication. A high-gain multi-beam electrically-steered antenna is combined with a processing system to measure the angles between two or more satellites and determine the present distance to each satellite by the information broadcast on the TT&C channel. The knowledge of the angles and distances, as well as the trajectory of the satellites, can be combined with their locations as predicted by the satellite ephemeris data to triangulate the location of the receiver. This system is different from conventional GPS antennas because it does not require the cooperation of active communication with the satellites to derive a location estimate. The location is computed by the ground terminal, not by the satellite.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 17, 2023
    Applicant: All.Space Networks Limited
    Inventors: Jeremiah P. Turpin, Brian Billman, John Finney
  • Publication number: 20230246345
    Abstract: A lens array antenna system that includes a plurality of lens modules, each consisting of an RF lens and a plurality of feeds forming a linear feed region or feed array. Multiple linear feed regions supporting different frequency bands may be used. The lenses and array of feeds jointly rotate and are slidably connected to allow the location of the linear feed region relative to the focal locus of the lens to be changed by an actuator and controller to allow any two focal points corresponding to desired beam scanning directions to be covered by the linear feed region. In this way, a planar hybrid electromechanical beamforming antenna can form two independent beams in the upper hemisphere with only two mechanical actuators and a single axis of electronic beamforming, reducing production cost compared to existing multibeam antenna solutions.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 3, 2023
    Applicant: All.Space Networks Limited
    Inventor: Jeremiah P. Turpin
  • Publication number: 20230231324
    Abstract: A multi-band antenna system that includes a first antenna array and a second antenna array. The first antenna array includes a plurality of lens sets, each including a lens and feed element(s) configured to transmit and/or receive electromagnetic signals that pass through the lens. The second antenna array includes a plurality of antenna elements, each disposed between two of the lenses of the first array.
    Type: Application
    Filed: December 19, 2022
    Publication date: July 20, 2023
    Applicant: All.Space Networks Limeted
    Inventors: Jeremiah P. Turpin, Clinton P. Scarborough, Daniel F. DiFonzo, Brian Murphy Billman
  • Publication number: 20230221446
    Abstract: A multibeam Radio Frequency (RF) lens antenna is designed as a receiver for Global Navigation Satellite System (GNSS) applications, such as GPS (Global Positioning System), Galileo, GLONASS, COMPASS, and others. The RF lens and plurality of associated feed elements and receiver circuits combine to form a plurality of resulting high-gain relatively narrow beams that, taken together, allow reception of signals from GNSS satellites over the entire upper hemisphere. Any kind of RF lens can be used, where the lens can be of homogeneous or inhomogeneous, dielectric or metamaterial/metasurface construction. The benefit of this approach to build a GNSS receiver over existing alternatives is increased gain and decreased noise at each receiver, which improves the signal to noise ratio (SNR) and improves the accuracy and reliability of the position and time measurements, while also reducing the impact of, and sensitivity to, interference, jamming, and spoofing signals.
    Type: Application
    Filed: December 16, 2022
    Publication date: July 13, 2023
    Applicant: All.Space Networks Limited
    Inventors: Robert J. Zavrel, Jeremiah P. Turpin, John Finney
  • Publication number: 20230223684
    Abstract: A field-assembled satellite communications terminal has a plurality of discrete, modular aperture blocks. Each aperture block contains an electrically steered antenna aperture, and a plurality of interconnection ports for power and data communications between the plurality of aperture blocks. The plurality of interconnection ports are removably connectable by the end user in the field, The terminal further has a signal processing system for receiving, processing, and generating signals to and from the apertures.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 13, 2023
    Applicant: All.Space Networks Limited
    Inventors: Jeremiah P. Turpin, Brian Murphy Billman, John Finney
  • Patent number: 11681052
    Abstract: A ground antenna determines the current time and its own position from received signals that were transmitted by artificial earth satellites for communication. A high-gain multi-beam electrically-steered antenna is combined with a processing system to measure the angles between two or more satellites and determine the present distance to each satellite by the information broadcast on the TT&C channel. The knowledge of the angles and distances, as well as the trajectory of the satellites, can be combined with their locations as predicted by the satellite ephemeris data to triangulate the location of the receiver. This system is different from conventional GPS antennas because it does not require the cooperation of active communication with the satellites to derive a location estimate. The location is computed by the ground terminal, not by the satellite.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: June 20, 2023
    Assignee: All. Space Networks Limited
    Inventors: Jeremiah P. Turpin, Brian Billman, John Finney