Patents by Inventor Jeremiah Pender

Jeremiah Pender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9721807
    Abstract: Embodiments described herein relate to methods for patterning a substrate. Patterning processes, such as double patterning and quadruple patterning processes, may benefit from the embodiments described herein which include performing an inert plasma treatment on a spacer material, performing an etching process on a treated region of the spacer material, and repeating the inert plasma treatment and the etching process to form a desired spacer profile. The inert plasma treatment process may be a biased process and the etching process may be an unbiased process. Various processing parameters, such as process gas ratios and pressures, may be controlled to influence a desired spacer profile.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: August 1, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Qingjun Zhou, Jungmin Ko, Tom Choi, Sean Kang, Jeremiah Pender, Srinivas D. Nemani, Ying Zhang
  • Patent number: 9478433
    Abstract: Embodiments described herein relate to methods for patterning a substrate. Patterning processes, such as double patterning and quadruple patterning processes, may benefit from the embodiments described herein which include performing an inert plasma treatment on a spacer material, performing an etching process on a treated region of the spacer material, and repeating the inert plasma treatment and the etching process to form a desired spacer profile. The inert plasma treatment process may be a biased process and the etching process may be an unbiased process. Various processing parameters, such as process gas ratios and pressures, may be controlled to influence a desired spacer profile.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: October 25, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Qingjun Zhou, Jungmin Ko, Tom Choi, Sean Kang, Jeremiah Pender, Srinivas D. Nemani, Ying Zhang
  • Publication number: 20160293438
    Abstract: Embodiments described herein relate to methods for patterning a substrate. Patterning processes, such as double patterning and quadruple patterning processes, may benefit from the embodiments described herein which include performing an inert plasma treatment on a spacer material, performing an etching process on a treated region of the spacer material, and repeating the inert plasma treatment and the etching process to form a desired spacer profile. The inert plasma treatment process may be a biased process and the etching process may be an unbiased process. Various processing parameters, such as process gas ratios and pressures, may be controlled to influence a desired spacer profile.
    Type: Application
    Filed: March 24, 2016
    Publication date: October 6, 2016
    Inventors: Qingjun ZHOU, Jungmin KO, Tom CHOI, Sean KANG, Jeremiah PENDER, Srinivas D. NEMANI, Ying ZHANG
  • Publication number: 20160293437
    Abstract: Embodiments described herein relate to methods for patterning a substrate. Patterning processes, such as double patterning and quadruple patterning processes, may benefit from the embodiments described herein which include performing an inert plasma treatment on a spacer material, performing an etching process on a treated region of the spacer material, and repeating the inert plasma treatment and the etching process to form a desired spacer profile. The inert plasma treatment process may be a biased process and the etching process may be an unbiased process. Various processing parameters, such as process gas ratios and pressures, may be controlled to influence a desired spacer profile.
    Type: Application
    Filed: December 14, 2015
    Publication date: October 6, 2016
    Inventors: Qingjun ZHOU, Jungmin KO, Tom CHOI, Sean KANG, Jeremiah PENDER, Srinivas D. NEMANI, Ying ZHANG
  • Patent number: 8143138
    Abstract: Described herein are methods for fabricating dual-damascene interconnect structures. In one embodiment, the interconnect structures are fabricated with a dual-damascene method having trenches then vias formed. The method includes novel liner depositions after the trench and via etches. The method includes etching trenches in a dielectric layer. Next, the method includes depositing a first liner layer on the dielectric layer. Next, the method includes etching vias in the dielectric layer and an etch stop layer. Next, the method includes depositing a second liner layer on the first liner layer. The second liner layer is deposited on the exposed surfaces of the first liner layer, dielectric layer, etch stop layer, and the first metal layer. Then, a second metal layer is deposited on the second liner layer.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 27, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Ryan James Patz, Igor Peidous, Jeremiah Pender, Michael D. Armacost
  • Publication number: 20100078825
    Abstract: Described herein are methods for fabricating dual-damascene interconnect structures. In one embodiment, the interconnect structures are fabricated with a dual-damascene method having trenches then vias formed. The method includes novel liner depositions after the trench and via etches. The method includes etching trenches in a dielectric layer. Next, the method includes depositing a first liner layer on the dielectric layer. Next, the method includes etching vias in the dielectric layer and an etch stop layer. Next, the method includes depositing a second liner layer on the first liner layer. The second liner layer is deposited on the exposed surfaces of the first liner layer, dielectric layer, etch stop layer, and the first metal layer. Then, a second metal layer is deposited on the second liner layer.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: Ryan James Patz, Igor Peidous, Jeremiah Pender, Michael D. Armacost
  • Publication number: 20100043821
    Abstract: Described herein are methods and apparatus for removing photoresist in the presence of low-k dielectric layers. In one embodiment, the method includes exciting a first mixture of gases having a ratio of a flow rate of reducing process gas to a flow rate of an oxygen-containing process gas that is between 1:1 and 100:1 to generate a first reactive gas mixture. Next, the method includes exposing the photoresist layer that overlays the low-k dielectric layer on a substrate to the first reactive gas mixture to selectively remove the photoresist layer from the dielectric layer. Next, the method includes exposing the photoresist layer to a second reactive gas mixture to selectively remove the photoresist layer from the dielectric layer. The first and second reactive gas mixtures contain substantially no ions when the substrate is exposed to these mixtures in order to minimize damage to the low-k dielectric layer.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Inventors: Siyi Li, Ryan Patz, Qingjun Zhou, Jeremiah Pender, Michael D. Armacost
  • Publication number: 20100022091
    Abstract: Described herein are methods and apparatuses for etching low-k dielectric layers to form various interconnect structures. In one embodiment, the method includes forming an opening in a resist layer. The method further includes etching a porous low-k dielectric layer with a process gas mixture that includes a fluorocarbon gas and a carbon dioxide (CO2) gas to form vias. The fluorocarbon gas may be C4F6 gas. A ratio of a flow rate of the C4F6 gas to a flow rate of the CO2 gas can vary from approximately 1:2 to 1:10. In another embodiment, the porous low-k dielectric layer is etched with a process gas mixture that includes a fluorocarbon gas and an argon gas with no CHF3 gas to form trenches aligned with the vias in an integrated dual-damascene structure. The fluorocarbon gas may be CF4 gas.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Inventors: SIYI LI, Qingjun Zhou, Ryan Patz, Yifeng Zhou, Jeremiah Pender, Michael D. Armacost
  • Publication number: 20070020944
    Abstract: A process of selectively etching a sacrificial light absorbing material (SLAM) over a dielectric material, such as carbon doped oxide, on a substrate using a plasma of a gas mixture in a plasma etch chamber. The gas mixture comprises a hydrofluorocarbon gas, an optional hydrogen-containing gas, an optional fluorine-rich fluorocarbon gas, a nitrogen gas, an oxygen gas, and an inert gas. The process could provide a SLAM to a dielectric material etching selectivity ratio greater than 10:1.
    Type: Application
    Filed: September 27, 2006
    Publication date: January 25, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Hee Yeop Chae, Jeremiah Pender, Gerardo Delgadino, Xiaoye Zhao, Yan Ye
  • Publication number: 20050029229
    Abstract: A process of selectively etching a sacrificial light absorbing material (SLAM) over a dielectric material, such as carbon doped oxide, on a substrate using a plasma of a gas mixture in a plasma etch chamber. The gas mixture comprises a hydrofluorocarbon gas, an optional hydrogen-containing gas, an optional fluorine-rich fluorocargon gas, a nitrogen gas, an oxygen gas, and an inert gas. The process could provide a SLAM to a dielectric material etching selectivity ratio greater than 10:1.
    Type: Application
    Filed: November 12, 2003
    Publication date: February 10, 2005
    Inventors: Hee Chae, Jeremiah Pender, Gerardo Delgadino, Xiaoye Zhao, Yan Ye