Patents by Inventor Jeremiah T. P. Pender

Jeremiah T. P. Pender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160133441
    Abstract: Embodiments of methods for removing materials from a substrate are provided herein. In some embodiments, a method of controlling contaminants in a process chamber may include flowing a first gas into the process chamber during an interval between completion of a process and start of a subsequent process in the process chamber to remove the contaminants from the process chamber; and flowing a second gas into the process chamber at a specific flow rate during the subsequent process to generate a same species as the contaminants.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: JONATHAN GERMAIN, JEREMIAH T. P. PENDER, SHI WEI TOH, DAVID T. OR
  • Patent number: 9299577
    Abstract: Methods for eliminating early exposure of a conductive layer in a dual damascene structure and for etching a dielectric barrier layer in the dual damascene structure are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes patterning a substrate having a dielectric bulk insulating layer disposed on a dielectric barrier layer using a hardmask layer disposed on the dielectric bulk insulating layer as an etching mask, exposing a portion of the dielectric barrier layer after removing the dielectric bulk insulating layer uncovered by the dielectric bulk insulating layer, removing the hardmask layer from the substrate, and subsequently etching the dielectric barrier layer exposed by the dielectric bulk insulating layer.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Chia-Ling Kao, Sean Kang, Jeremiah T P Pender, Srinivas D. Nemani, Mehul B. Naik
  • Publication number: 20150214101
    Abstract: Methods for eliminating early exposure of a conductive layer in a dual damascene structure and for etching a dielectric barrier layer in the dual damascene structure are provided. In one embodiment, a method for etching a dielectric barrier layer disposed on a substrate includes patterning a substrate having a dielectric bulk insulating layer disposed on a dielectric barrier layer using a hardmask layer disposed on the dielectric bulk insulating layer as an etching mask, exposing a portion of the dielectric barrier layer after removing the dielectric bulk insulating layer uncovered by the dielectric bulk insulating layer, removing the hardmask layer from the substrate, and subsequently etching the dielectric barrier layer exposed by the dielectric bulk insulating layer.
    Type: Application
    Filed: November 13, 2014
    Publication date: July 30, 2015
    Inventors: He REN, Chia-Ling KAO, Sean KANG, Jeremiah T P PENDER, Srinivas D. NEMANI, Mehul B. NAIK
  • Publication number: 20150200042
    Abstract: A portion of the ultra-low k dielectric layer over a substrate is modified using a downstream plasma comprising a first chemistry. The modified portion of the ultra-low k dielectric layer is etched using the downstream plasma comprising a second chemistry. The downstream plasma is generated using a remote plasma source.
    Type: Application
    Filed: January 10, 2014
    Publication date: July 16, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Mang Mang Ling, Sean S. Kang, Jeremiah T P Pender, Srinivas D. Nemani, Bradley J. Howard
  • Publication number: 20150079798
    Abstract: Methods for etching an etching stop layer disposed on the substrate using a cyclical etching process are provided. In one embodiment, a method for etching an etching stop layer includes performing a treatment process on the substrate having a silicon nitride layer disposed thereon by supplying a treatment gas mixture into the processing chamber to treat the silicon nitride layer, and performing a chemical etching process on the substrate by supplying a chemical etching gas mixture into the processing chamber, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride, wherein the chemical etching process etches the treated silicon nitride layer.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Inventors: Mang-Mang LING, Sean S. KANG, Jeremiah T. P. PENDER, Srinivas D. NEMANI, Bradley HOWARD
  • Patent number: 8980758
    Abstract: Methods for etching an etching stop layer disposed on the substrate using a cyclical etching process are provided. In one embodiment, a method for etching an etching stop layer includes performing a treatment process on the substrate having a silicon nitride layer disposed thereon by supplying a treatment gas mixture into the processing chamber to treat the silicon nitride layer, and performing a chemical etching process on the substrate by supplying a chemical etching gas mixture into the processing chamber, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride, wherein the chemical etching process etches the treated silicon nitride layer.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: March 17, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Mang-Mang Ling, Sean S. Kang, Jeremiah T. P. Pender, Srinivas D. Nemani, Bradley Howard
  • Patent number: 8980754
    Abstract: Methods of removing photoresists from low-k dielectric films are described. For example, a method includes forming and patterning a photoresist layer above a low-k dielectric layer, the low-k dielectric layer disposed above a substrate. Trenches are formed in the exposed portions of the low-k dielectric layer. A plurality of process cycles is performed to remove the photoresist layer. Each process cycle includes forming a silicon source layer on surfaces of the trenches of the low-k dielectric layer, and exposing the photoresist layer to an oxygen source to form an Si—O-containing layer on the surfaces of the trenches of the low-k dielectric layer and to remove at least a portion of the photoresist layer.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 17, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Yifeng Zhou, Srinivas D. Nemani, Khoi Doan, Jeremiah T. P. Pender
  • Publication number: 20150064921
    Abstract: Methods for etching a material layer disposed on the substrate using a low temperature etching process along with a subsequent low temperature plasma annealing process are provided. In one embodiment, a method for etching a material layer disposed on a substrate includes transferring a substrate having a material layer disposed thereon into an etching processing chamber, supplying an etching gas mixture into the processing chamber, remotely generating a plasma in the etching gas mixture to etch the material layer disposed on the substrate, and plasma annealing the material layer at a substrate temperature less than 100 degrees Celsius.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Inventors: Srinivas D. NEMANI, Sean S. KANG, Jeremiah T. P. PENDER, Chia-Ling KAO, Sergey G. BELOSTOTSKIY, Lina ZHU
  • Publication number: 20130023123
    Abstract: Methods of removing photoresists from low-k dielectric films are described. For example, a method includes forming and patterning a photoresist layer above a low-k dielectric layer, the low-k dielectric layer disposed above a substrate. Trenches are formed in the exposed portions of the low-k dielectric layer. A plurality of process cycles is performed to remove the photoresist layer. Each process cycle includes forming a silicon source layer on surfaces of the trenches of the low-k dielectric layer, and exposing the photoresist layer to an oxygen source to form an Si—O-containing layer on the surfaces of the trenches of the low-k dielectric layer and to remove at least a portion of the photoresist layer.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Inventors: Yifeng Zhou, Srinivas D. Nemani, Khoi Doan, Jeremiah T. P. Pender
  • Patent number: 8314033
    Abstract: A significantly improved low-k dielectric patterning method is described herein using plasma comprising an oxygen radical source and a silicon source to remove the photo-resist layer.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 20, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Yifeng Zhou, Srinivas D. Nemani, Khoi Doan, Jeremiah T. P. Pender
  • Publication number: 20120077344
    Abstract: Methods of patterning low-k dielectric films are described.
    Type: Application
    Filed: March 24, 2011
    Publication date: March 29, 2012
    Inventors: Yifeng Zhou, Srinivas D. Nemani, Khoi Doan, Jeremiah T. P. Pender
  • Patent number: 7848898
    Abstract: Methods for monitoring process drift using plasma characteristics are provided. In one embodiment, a method for monitoring process drift using plasma characteristics includes obtaining metrics of current and voltage information of a first waveform coupled to a plasma during a plasma process formed on a substrate, obtaining metrics of current and voltage information of a second waveform coupled to the plasma during the plasma process formed on the substrate, the first and second waveforms having different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform, and adjusting the plasma process in response to the determined at least one characteristic of the plasma.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: December 7, 2010
    Assignee: Applied Materials Inc.
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T. P. Pender, Tarreg Mawari
  • Patent number: 7620511
    Abstract: Methods for determining characteristics of a plasma are provided. In one embodiment, a method for determining characteristics of a plasma includes obtaining metrics of current and voltage information for first and second waveforms coupled to a plasma at different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform. In another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, and determining at least one characteristic of a plasma using model. In yet another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, measuring current and voltage for waveforms coupled to the plasma and having at least two different frequencies, and determining ion mass of a plasma from model and the measured current and voltage of the waveforms.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: November 17, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T. P. Pender, Tarreg Mawari
  • Patent number: 7575007
    Abstract: A chamber dry cleaning process particularly useful after a dielectric plasma etch process which exposes an underlying copper metallization. After the dielectric etch process, the production wafer is removed from the chamber and a cleaning gas is excited into a plasma to clean the chamber walls and recover the dielectric etching characteristic of the chamber. Preferably, the cleaning gas is reducing such as hydrogen gas with the addition of nitrogen gas. Alternatively, the cleaning gas may an oxidizing gas. If the wafer pedestal is vacant during the cleaning, it is not electrically biased. If a dummy wafer is placed on the pedestal during cleaning, the pedestal is biased. The cleaning process is advantageously performed every wafer cycle.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: August 18, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Hairong Tang, Xiaoye Zhao, Keiji Horioka, Jeremiah T. P. Pender
  • Publication number: 20090132189
    Abstract: Methods for determining characteristics of a plasma are provided. In one embodiment, a method for determining characteristics of a plasma includes obtaining metrics of current and voltage information for first and second waveforms coupled to a plasma at different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform. In another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, and determining at least one characteristic of a plasma using model. In yet another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, measuring current and voltage for waveforms coupled to the plasma and having at least two different frequencies, and determining ion mass of a plasma from model and the measured current and voltage of the waveforms.
    Type: Application
    Filed: January 16, 2009
    Publication date: May 21, 2009
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T.P. Pender, Tarreg Mawari
  • Publication number: 20090130856
    Abstract: Methods for monitoring process drift using plasma characteristics are provided. In one embodiment, a method for monitoring process drift using plasma characteristics includes obtaining metrics of current and voltage information of a first waveform coupled to a plasma during a plasma process formed on a substrate, obtaining metrics of current and voltage information of a second waveform coupled to the plasma during the plasma process formed on the substrate, the first and second waveforms having different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform, and adjusting the plasma process in response to the determined at least one characteristic of the plasma.
    Type: Application
    Filed: January 16, 2009
    Publication date: May 21, 2009
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T. P. Pender, Tarreg Mawari
  • Patent number: 7440859
    Abstract: Methods for determining characteristics of a plasma are provided. In one embodiment, a method for determining characteristics of a plasma includes obtaining metrics of a plasma at two different frequencies, and determining at least one characteristic of the plasma utilizing the metrics. In another embodiment, a method for determining characteristics of a plasma includes obtaining metrics of current and voltage information for first and second waveforms coupled to a plasma at different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform. In another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, and determining at least one characteristic of a plasma using model.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T. P. Pender, Tarreg Mawari
  • Publication number: 20080050922
    Abstract: A chamber dry cleaning process particularly useful after a dielectric plasma etch process which exposes an underlying copper metallization. After the dielectric etch process, the production wafer is removed from the chamber and a cleaning gas is excited into a plasma to clean the chamber walls and recover the dielectric etching characteristic of the chamber. Preferably, the cleaning gas is reducing such as hydrogen gas with the addition of nitrogen gas. Alternatively, the cleaning gas may an oxidizing gas. If the wafer pedestal is vacant during the cleaning, it is not electrically biased. If a dummy wafer is placed on the pedestal during cleaning, the pedestal is biased. The cleaning process is advantageously performed every wafer cycle.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Hairong Tang, Xiaoye Zhao, Keiji Horioka, Jeremiah T. P. Pender
  • Publication number: 20070294043
    Abstract: Methods for determining characteristics of a plasma are provided. In one embodiment, a method for determining characteristics of a plasma includes obtaining metrics of a plasma at two different frequencies, and determining at least one characteristic of the plasma utilizing the metrics. In another embodiment, a method for determining characteristics of a plasma includes obtaining metrics of current and voltage information for first and second waveforms coupled to a plasma at different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform. In another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, and determining at least one characteristic of a plasma using model.
    Type: Application
    Filed: December 29, 2006
    Publication date: December 20, 2007
    Inventors: STEVEN C. SHANNON, Daniel J. Hoffman, Jeremiah T.P. Pender, Tarreg Mawari
  • Publication number: 20070289359
    Abstract: Methods for determining characteristics of a plasma are provided. In one embodiment, a method for determining characteristics of a plasma includes obtaining metrics of current and voltage information for first and second waveforms coupled to a plasma at different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform. In another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, and determining at least one characteristic of a plasma using model. In yet another embodiment, the method includes providing a plasma impedance model of a plasma as a function of frequency, measuring current and voltage for waveforms coupled to the plasma and having at least two different frequencies, and determining ion mass of a plasma from model and the measured current and voltage of the waveforms.
    Type: Application
    Filed: June 5, 2007
    Publication date: December 20, 2007
    Inventors: Steven C. Shannon, Daniel J. Hoffman, Jeremiah T.P. Pender, Tarreg Mawari